xlp


Апдейт модели LQI за Октябрь'19

Апдейт модели LQI за Октябрь'19
Результаты консервативной количественной инвестиционной модели LQI (lazy quantitative investing), о которой я писал ранее (https://smart-lab.ru/blog/384110.php), за октябрь (результаты за прошлый месяц: https://smart-lab.ru/blog/565313.php). Вот веса предыдущего месяца и соответствующие ретурны торгуемых тикеров:
weight monthly.ret
XLY  0.184        0.12
XLP  0.067       -0.42
XLE  0.000       -2.09
XLF  0.000        2.50
XLV  0.000        5.13
XLI  0.205        1.13
XLB  0.000       -0.02
XLK  0.000        3.90
XLU  0.170       -0.76
IYZ  0.000        2.05
VNQ  0.000        1.13
SHY  0.000        0.31
TLT  0.202       -1.11
GLD  0.171        2.56
В октябре продолжился рост индекса S&P, и модель, имевшая большую аллокацию в защитных активах (XLY, XLU, TLT, GLD), снова от него отстала: SPY +2.21% vs. LQI +0.21%; модель также отстала и от другого бенчмарка — EQW (equal-weighted портфель из торгуемых тикеров) +1.03%. Максимальная просадка у модели получилась в 2 раза ниже, чем у индекса: 1.5% LQI vs. 3.0% SPY. Покупка защитного добра в этом месяце снова не оправдалась, но зато в следующем месяце аллокация выглядит более ориентированной на рост.

( Читать дальше )

Апдейт модели LQI за Сентябрь'19

Апдейт модели LQI за Сентябрь'19
Результаты консервативной количественной инвестиционной модели LQI (lazy quantitative investing), о которой я писал ранее (https://smart-lab.ru/blog/384110.php), за сентябрь (результаты за прошлый месяц: smart-lab.ru/blog/559544.php). Вот веса предыдущего месяца и соответствующие ретурны торгуемых тикеров:

    weight monthly.ret
XLY  0.111        1.28
XLP  0.113        1.75
XLE  0.000        3.93
XLF  0.000        4.55
XLV  0.083       -0.11
XLI  0.137        3.01
XLB  0.000        3.18
XLK  0.000        1.58
XLU  0.178        4.25
IYZ  0.000        3.40
VNQ  0.033        1.93
SHY  0.000       -0.13
TLT  0.246       -2.68
GLD  0.099       -3.39

В сентябре индекс S&P не без приключений вырос, и модель, имевшая большую аллокацию в защитных активах (TLT, GLD) и недоинвестировавшая в «секторы роста» (XLE, XLF, XLB), существенно от него отстала: SPY +1.95% vs. LQI +0.57%, модель также отстала и от другого бенчмарка — EQW (equal-weighted портфель из торгуемых тикеров) +1.61%. При этом максимальная просадка у LQI оказалась на уровне индекса — 1.6%. Покупка защитного добра в этом месяце не оправдалась, но я уже совершенно потерялся в трэше последнего времени на рынках, поэтому жую попкорн и наблюдаю.

Вот позиции модели на начало октября (доли в итоговом портфеле). Если решите их торговать — лучше заходить в ближайшие 1-5 дней с даты публикации:
    weight
XLY  0.184
XLP  0.067
XLE  0.000
XLF  0.000
XLV  0.000
XLI  0.205
XLB  0.000
XLK  0.000
XLU  0.170
IYZ  0.000
VNQ  0.000
SHY  0.000
TLT  0.202
GLD  0.171

Рекомендуемая аллокация на следующий месяц получилась чуть менее консервативной, чем ранее: модель разместила примерно 60% капитала в защитных активах (XLP, XLU, TLT, GLD) и примерно 40% — в секторах, ориентированных на рост (XLY, XLI). Учитывая текущую неопределенность на рынках — не вижу причин, почему бы это не держать. Единственное, что смущает — это концентрация, фактически весь капитал оказался в 6-ти тикерах.



( Читать дальше )

Апдейт модели LQI за Август'19

    • 03 сентября 2019, 01:43
    • |
    • MadQuant
  • Еще
Апдейт модели LQI за Август'19

Результаты консервативной количественной инвестиционной модели LQI (lazy quantitative investing), о которой я писал ранее (https://smart-lab.ru/blog/384110.php), за август. Давно про нее не писал, последний раз в феврале за январь (https://smart-lab.ru/blog/520054.php). Вот веса предыдущего месяца и соответствующие ретурны торгуемых тикеров:

weight monthly.ret
XLY 0.111 -0.94
XLP 0.141 2.17
XLE 0.000 -8.33
XLF 0.086 -4.71
XLV 0.090 -0.59
XLI 0.093 -2.65
XLB 0.000 -2.83
XLK 0.000 -1.54
XLU 0.148 5.09
IYZ 0.000 -5.27
VNQ 0.000 3.75
SHY 0.000 0.78
TLT 0.234 11.04
GLD 0.097 7.91

В отличие от января, по итогам которого модель дико отстала он S&P, это был воистину «месяц Бэкхэма»: самые большие веса оказались в практически единственно выросших активах (XLP, XLU, TLT, GLD), не захвачен из сильно выросших оказался только VNQ, и модель сложила несильно большую долю (менее 40%) в упавшие активы.
В результате модели удалось сильно обогнать рынок: SPY -1.67%, EQW (equal-weighted портфель из торгуемых тикеров) +0.28%, LQI +3.6%. По рискам (в терминах максимальной просадки) результат еще приятнее: 1% LQI vs. 2.5% EQW vs. 4.5% SPY. Покупка защитного добра (а на этот раз его было около двух третей портфеля — XLP, XLV, XLU, TLT, GLD ~ 70%) наконец-то принесла свои плоды.



( Читать дальше )

10-летний Бычий Рынок

На фондовом рынке продолжается “туземун”, только 1 недельный откат за последние 12 недель. В целом, S&P 500 вырос более чем на 12% в этом году. С 1950 года по настоящее время – это 4-е лучшее начало года.

Годы, когда S&P 500 сделал > 10% в первые 50 дней:

10-летний Бычий Рынок

S&P 500 закрывается выше уровня сопротивления 280.00, Vix формирует новые минимумы, закрывая неделю ниже 13.00

10-летний Бычий Рынок



( Читать дальше )

Апдейт модели LQI за Январь'19

Апдейт модели LQI за Январь'19
Результаты консервативной количественной инвестиционной модели LQI (lazy quantitative investing), о которой я писал ранее (https://smart-lab.ru/blog/384110.php), за январь (результаты за прошлый месяц: smart-lab.ru/blog/514243.php). После 3-х предыдущих месяцев обгона S&P, в январе модель жестко от него отстала. Вот веса предыдущего месяца и соответствующие ретурны торгуемых тикеров:

weight monthly.ret
XLY 0.000 9.87
XLP 0.000 5.14
XLE 0.000 11.21
XLF 0.000 8.90
XLV 0.095 4.81
XLI 0.000 11.43
XLB 0.000 5.60
XLK 0.000 6.94
XLU 0.111 3.48
IYZ 0.000 6.41
VNQ 0.000 11.85
SHY 0.550 0.25
TLT 0.244 0.38
GLD 0.000 2.89

Если коротко, то результат получился плохим из-за того, что рынок резко развернулся, и выросло все, а модель «проспала» это движение: SPY +8.0%, EQW (equal-weighted портфель из торгуемых тикеров) +6.4%, LQI +1.1%. К сожалению, такова плата моментуму за сохранность капитала, которую он предоставляет. На этот раз это был просто не день Бэкхема, ну, будет новая битва — там посмотрим.



( Читать дальше )

Апдейт модели LQI за Декабрь'18

Апдейт модели LQI за Декабрь'18
Результаты консервативной количественной инвестиционной модели LQI (lazy quantitative investing), о которой я писал ранее (https://smart-lab.ru/blog/384110.php), за декабрь (результаты за прошлый месяц: smart-lab.ru/blog/508343.php). Модель третий месяц подряд обгоняет SPY, но учитывая динамику индекса за последний месяц это не очень-то вселяет оптимизм. Вот веса предыдущего месяца и соответствующие ретурны торгуемых тикеров:

weight monthly.ret
XLY 0.048 -7.95
XLP 0.221 -8.91
XLE 0.000 -12.43
XLF 0.000 -11.12
XLV 0.000 -9.35
XLI 0.196 -10.65
XLB 0.000 -6.88
XLK 0.000 -8.36
XLU 0.210 -3.99
IYZ 0.214 -8.22
VNQ 0.112 -7.96
SHY 0.000 0.76
TLT 0.000 5.85
GLD 0.000 4.92

В среднем перформанс выбранных секторов оказался чуть лучше, чем у SPY, за счет этого удалось примерно на 1% обогнать индекс, однако из-за отсутствия в портфеле из-за предыдущего несходящего тренда защитных активов — золота и трежерей — модель проиграла EQW (equal-weighted портфель торгуемых тикеров): (-8.8%) SPY vs (-7.8%) LQI vs. (-6.0%) EQW. В терминах максимальной просадки в течение месяца модель также обогнала SPY и оказалась хуже EQW: 12.6% LQI vs. 15.4% SPY vs. 11.1% EQW. Что немного радует: в течение месяца я активно управлял реальным счетом (сливая портфель по ходу углубления просадки), так что результат получился чуть лучше — наверное, где-то на уровне EQW, однако этот результат все равно удручающий.



( Читать дальше )

Апдейт модели LQI за Ноябрь'18 - 10+% годовых в $$$ не слезая с дивана!

Апдейт модели LQI за Ноябрь'18 - 10+% годовых в $$$ не слезая с дивана!



Результаты консервативной количественной инвестиционной модели LQI (lazy quantitative investing), о которой я писал ранее (https://smart-lab.ru/blog/384110.php), за ноябрь (результаты за прошлый месяц: smart-lab.ru/blog/502576.php). Модель зашла в белую полосу аутперформанса и второй месяц подряд существенно обгоняет SPY. Вот веса предыдущего месяца и соответствующие ретурны торгуемых тикеров:

weight monthly.ret
XLY 0.206 2.48
XLP 0.213 2.27
XLE 0.000 -1.56
XLF 0.104 2.63
XLV 0.174 8.08
XLI 0.000 3.81
XLB 0.000 3.80
XLK 0.025 -1.96
XLU 0.278 3.54
IYZ 0.000 1.81
VNQ 0.000 4.67
SHY 0.000 0.38
TLT 0.000 1.79
GLD 0.000 0.34

За счет того, что модель сидела в наиболее выросших секторах и не сидела в сливших — удалось обогнать и SPY и EQW (equal-weighted портфель торгуемых тикеров): +1.85% SPY vs +3.61% LQI vs. 2.3% EQW. В терминах максимальной просадки в течение месяца модель также обогнала SPY и оказалась на уровне с EQW: 4.1% LQI vs. 6.2% SPY vs. 3.9% EQW.

Вот позиции модели на начало декабря (доли в итоговом портфеле). Если решите их торговать — лучше заходить в ближайшие 1-5 дней с даты публикации:
weight
XLY 0.048
XLP 0.221
XLE 0.000
XLF 0.000
XLV 0.000
XLI 0.196
XLB 0.000
XLK 0.000
XLU 0.210
IYZ 0.214
VNQ 0.112
SHY 0.000
TLT 0.000
GLD 0.000



( Читать дальше )

Апдейт модели LQI за Октябрь'18 - 10+% годовых в $$$ не слезая с дивана!

Апдейт модели LQI за Октябрь'18 - 10+% годовых в $$$ не слезая с дивана!
Результаты консервативной количественной инвестиционной модели LQI (lazy quantitative investing), о которой я писал ранее (https://smart-lab.ru/blog/384110.php), за октябрь (результаты за прошлый месяц: smart-lab.ru/blog/497297.php). Думаю, рассказывать о прошедшем месяце много не надо, и для модели он также выдался ужасным, однако за счет более грамотной аллокации в защитные активы и ухода из самых кислотных — модель наконец-то аутперформила SPY, причем довольно существенно. Вот веса предыдущего месяца и соответствующие ретурны торгуемых тикеров:

weight monthly.ret
XLY 0.161 -10.10
XLP 0.181 2.02
XLE 0.144 -11.37
XLF 0.122 -4.75
XLV 0.171 -6.78
XLI 0.000 -10.87
XLB 0.000 -9.18
XLK 0.000 -8.00
XLU 0.078 1.98
IYZ 0.062 -5.18
VNQ 0.081 -2.93
SHY 0.000 0.15
TLT 0.000 -2.93
GLD 0.000 2.12

За сачет того, что модель не залезла в часть особенно сливших секторов (XLI, XLB, XLK) — удалось обогнать SPY: (-6.9)% SPY vs (-5.0)% LQI vs. (-4.7)% EQW. В терминах максимальной просадки в течение месяца модель также обогнала SPY и оказалась чуть хуже EQW: 6.9% LQI vs. 9.7% SPY vs. 6.3% EQW.



( Читать дальше )

ETF - стратегии и принципы управления структурой состава биржевых фондов.


       В этой статье мы рассмотрим некоторые особенности подбора и управления активами, составляющими структуру биржевых фондов (ETF).

       Для начала кратко напомню о том, что же такое ETF, как они устроены и о том, где и как они торгуются. ETF – сокращенно Exchange Traded Funds, биржевой инвестиционный фонд. Такой фонд состоит из различных активов – акций, облигаций, производных инструментов, товаров, недвижимости, валюты…подобранных по определенному принципу. Компания-провайдер фонда выпускает свои ценные бумаги на такой фонд  (паи, если проводить аналогию с российскими паевыми инвестиционными фондами, ПИФ). Приобретая такую бумагу, вы приобретаете соответствующую часть, пай, диверсифицированного портфеля, лежащего в основе фонда. Теоритически различных ETF может быть бесконечное множество, ведь в мире существует огромное разнообразие активов, которые можно собрать в различных пропорциях. Каждый ETF имеет свои уникальные название и тикер, соответствующие коды и документацию, регулируются на государственном уровне наряду с акциями публичных компаний, информация раскрывается на сайте провайдера фонда.  ETF являются открытыми инвестиционными фондами, которые торгуются по всему миру на фондовых биржах и в OTC системах, обладают высокой ликвидностью. Приобрести их возможно, как и акции, через привычные системы интернет-трейдинга брокера. Чаще всего ETF отслеживают индексы, которые формируются с учетом рыночной капитализации или же по неким фундаментальным критериям. Есть и затратная часть владения ETF – необходимо платить компании-провайдеру, выпустившей бумагу, за управление активами, входящими в структуру данного ETF. Но эти расходы малы, и составляют как правило десятые и сотые процента от номинала в год, существуют фонды даже с отрицательной платой за управление. Биржевые игроки и инвесторы, использующие ETF, в своих торговых стратегиях получают выгоды от высокой ликвидности и гибкости этих инструментов при торговле на различных временных горизонтах. В биржевые фонды по всему миру вложены триллионы долларов. 



( Читать дальше )

Апдейт модели LQI за Сентябрь'18 - 10+% годовых в $$$ не слезая с дивана!

Апдейт модели LQI за Сентябрь'18 - 10+% годовых в $$$ не слезая с дивана!
Результаты консервативной количественной инвестиционной модели LQI (lazy quantitative investing), о которой я писал ранее (https://smart-lab.ru/blog/384110.php), за сентябрь (результаты за прошлый месяц: smart-lab.ru/blog/491995.php). Модель продолжает андерперформить SPY и EQW, поскольку широкий рынок продолжает бычий рост, а защитные активы падают из-за роста процентных ставок, в том время как примерно половину капитала модель держит в защитных активах. Вот веса предыдущего месяца и соответствующие ретурны торгуемых тикеров:

      wts     ret
XLY 0.082  0.0053
XLP 0.118  0.0099
XLE 0.070  0.0244
XLF 0.133 -0.0221
XLV 0.069  0.0295
XLI 0.036  0.0217
XLB 0.000 -0.0179
XLK 0.093 -0.0002
XLU 0.000 -0.0065
IYZ 0.061  0.0077
VNQ 0.119 -0.0264
SHY 0.000 -0.0014
TLT 0.218 -0.0286
GLD 0.000 -0.0066

Корреляция между весами и ретурнами отрицательная — (-0.32), вследствие чего модель отстала от своих бенчмарков: (-0.57)% LQI vs +0.59% SPY vs. (-0.08)% EQW. Отставание вызвано тем, что существенную долю капитала модель вложила в реагирующие на ставки активы VNQ, TLT & XLP, а также по непонятной причине сливший финсектор XLF (обычно при росте ставок и падении трежерей он растет, но этом месяце это правило не работает). В терминах максимальной просадки в течение месяца модель где-то между SPY и EQW: 1.0% LQI vs. 0.8% SPY vs. 1.2% EQW.

( Читать дальше )

....все тэги
2010-2020
UPDONW