Избранное трейдера ves2010
> list.files(«E:/syst/lib»)
[1] "_algo_ algotrading.pdf"
[2] "_algo_ IntroductionToAlgorithmicTradingStrategies.pdf"
[3] "_algo_ stan.pdf"
[4] "_bayes_ applied bayesian modelling.pdf"
[5] "_bayes_ bajesovskie seti… logiko-veroyatnostnyj podxod.djvu"
[6] "_bayes_ bayesian statistical modelling.pdf"
[7] "_bayes_ BayesNets.pdf"
[8] "_bayes_ байесовские методы маш обуч.pdf"
[9] "_bayes_ введение в методы байесовского статистического вывода.djvu"
[10] "_caus_ Application of adaptive nonlinear Granger causality.pdf"
[11] "_caus_ Causalities of the Taiwan Stock Market.pdf"
[12] "_caus_ granger causality — theory and applicts.pdf"
[13] "_caus_ grangercausality.pdf"
[14] "_caus_ sugihara-causality-science.pdf"
[15] "_caus_ Причинный анализ в статистических исследованиях.djvu"
[16] "_change_ adaptive filtering and change detection.djvu"
[17] "_change_ detection of abrupt changes.pdf"
[18] "_change_ Efficient Multivariate Analysis of Change Points.pdf"
[19] "_change_ nikiforov_i_v_posledovatelnoe_obnaruzhenie_izmeneniya_svoist.djvu"
[20] "_change_ zhiglyavskii_a_a_kraskovskii_a_e_obnaruzhenie_razladki_sluch.djvu"
[21] "_change_ адаптивный метод обнаружения нарушений закономерностей по наблюдениям.pdf"
[22] "_change_ Момент разладки Чернова.pdf"
[23] "_change_ обнаружение изменения свойств сигналов и динамических систем.djvu"
[24] "_change_ обнаружение моментов разладки случайной последовательности.pdf"
[25] "_change_ обнаружение нарушений закономерностей по наблюдениям при наличии помех.pdf"
Физические упражнения и высокий уровень активности в старости могут продлевать жизнь человека по той причине, что они активируют ген NRF1, защищающий концы молекул ДНК от повреждений.
Смысл в том, что концы молекул ДНК, теломеры, по мере деления клеток сокращаются, и как только они преодолевают критический размер, клетка умирает. Бедность, стресс, депрессия, многократно ускоряют этот процесс.
Выяснялось, что при 45 минутном занятии спортом активизируется группа белков, которые отвечают за защиту, а также восстановление теломер, в момент когда кода клетка не делится.
Так же выяснялось, что голодание или ограничение колорийности пищи, так же запускают эти процессы.
ЗЫ. По этому ученые подтвердитили то, о чем я вам говорил :) Жду аплодисментов :)







Здравствуйте дорогие друзья!
Хочу проверить влияние спреда IV-HV на результат торговли, если куплен стредл на центральном страйке и выравнивать дельту фьючем каждый день.
Сдесь и далее в следующих статьях:
IV — подразумеваемая волатильность центрального страйка
HV — историческая волатильность приведенная к годовой
Спред — разница между IV и HV
Все дальнейшие расчеты и скриншёты приведены для инструмента RI.
Формула по рассчету HV:
Сначала рассчитывается средний дневной ход цены (HV_EMA) в процентах
HV_EMA=HV_EMA(t-1) + Alfa * (100 * (Abs(PRICE_F — Prev_PRICE_F) / Prev_PRICE_F) — HV_EMA(t-1))
где:
HV_EMA(t-1) — средний дневной ход цены на предыдущем шаге (дне)
Alfa — коэффициент сглаживания (0...1)
PRICE_F — цена фьючерса на текущем шаге (дне)
Prev_PRICE_F — цена фьючерса на предыдущем шаге (дне)
Если проще сказать то HV_EMA это экспоненциальная средняя дневных изменений цены фьючерса взятых по модулю.
У нас получается дневная волатильность. Далее приводим дневную волатильность к годовой:
HV=HV_EMA * КОРЕНЬ(252)
Почему я взял 252? Потому что в году примерно 252 рабочих дня, хотя этот вопрос спорный какой коэффициент брать 252 или 365.
Все, теперь у нас есть историческая волатильность приведенная к годовой и её можно теперь сравнивать с подразумеваемой.
Методом тупого перебора я перебрал все коэффициенты Alfa и определил, что у коэффициента Alfa=0,06 наименьшее среднеквадратичное отклонение между IV и HV, его то и возьмем для дальнейших исследований.
Посчитаем разность между IV и HV и построим график этого спреда
