Постов с тегом "Оптимизация": 134

Оптимизация


Прошу меня понять и простить, но я не мог поступить иначе

Я добавил в ЧС всех незнакомых мне авторов (т.е. тех, которые не числятся моими «друзьями»), написавших о коронавирусе.
Ибо меня стала снова беспокоить засорённость моей ленты блогов.
Число авторов Смартлаба неуклонно растёт, и их необходимо периодически подвергать фильтрации.
О способах фильтрации можно почитать в моей недавней статье.
Как эффективно оптимизировать ленту блогов СмартЛаба? Два способа.


( Читать дальше )

Как эффективно оптимизировать ленту блогов СмартЛаба? Два способа.

Не секрет, что избыточная информация (информационный шум) может причинить вред с большей вероятностью, чем нанести пользу.
Информационный шум может, с одной стороны, расширить ваш кругозор и обратить ваше внимание на такие темы, о которых вы не догадывались, но, одновременно, эти новые знания и темы могут отвлечь ваше внимание и забрать ваше время.
Кроме того, человеческая память — не резиновая, и хранение обширных, но не слишком важных знаний, может отрицательно сказаться на усвоении и хранении тех знаний, которые критически важны для вашей основной деятельности.
Несмотря на то, что все мы можем припомнить среди наших знакомых индивидов, которых принято называть «Ходячая Энциклопедия», обычные люди не обладают подобными способностями.
Лента Смартлаба содержит статьи с разнообразной тематикой, и это, на первый взгляд, ее достоинство.
Но Смартлаб постоянно развивается, количество авторов неуклонно увеличивается, и, лично для меня, уже настал такой момент, когда я вынужден прибегнуть к фильтрованию информации, дабы не отвлекаться и не распыляться на малозначительные для меня темы.
Вы можете мне возразить: «А кто тебя заставляет читать всё подряд? Не нравится — не читай!».

( Читать дальше )

Обобщённый подход к диверсификации рисков

Дополнение к серии «Портфельная оптимизация как бустинг на слабых моделях»


  • Обобщённая проблема

Результаты оценки любых случайных величин представляют из себя случайную величину. Не исключением здесь будут оценки ковариации.

Особенно сильно эффект неточности полученных оценок (случайности статистик) будет проявляться в портфелях, составленных из большого количества ценных бумаг — большего или сопоставимого количеству располагаемых наблюдений. И, поскольку, в некотором приближении задача портфельного инвестирования сводится к поиску двух максимально независимых активов из множества:


Обобщённый подход к диверсификации рисков 

где R — коэффициент взаимной корреляции — её решение, естественным образом, будет располагаться в области максимально отрицательной статистической ошибки.

( Читать дальше )

Оценка ковариации акций в портфеле

Вынес в отдельное репо реализацию расчета ковариационной матрицы Ledoit-Wolf на Python.

Может быть полезно для тех кто занимается количественной оптимизацией портфелей акций.

Портфельная оптимизация как бустинг на «слабых» моделях-3

Устойчивые долгосрочные модели


В предыдущих частях (часть 1, часть 2) мы рассмотрели построение композитных систем оценок ценных бумаг, построенных при помощи распространённых средств машинного обучения (Bag/Boost методы). Однако, такой подход, несмотря на все свои преимущества (скорость, точность) имеет ряд больших недостатков – отсутствие универсальности моделей в результате проблем «переобучения»  (точной настройки на определённые типы рынков и временные интервалы) и сложность интерпретации полученных композиций.

В результате решения этих проблем мы разработали базовую модель на основе наших представлений о стохастических дифференциальных уравнениях с квантовыми скачками, образующих улыбку волатильности. Эта макромодель получила в наших исследованиях наиболее полную микроскопическую интерпретацию.



( Читать дальше )

А плох-ли кризис для трендовых торговых систем?

Друзья! Набирают обороты разговоры о новом предстоящем мировом кризисе, обсуждения ведутся в соседних топиках, по телевизору.
Меня тоже озадачил вопрос, что же ждать нам, алготрейдерам, особенно трендовикам? И я решил прогнать на тестере своих трендовых роботов на периоде 2008-2010г, особенно, концентрируясь на результатах второй половины 2008. Тестил фьючерс Сбербанка. Даже не менял параметры, а взял те, которые использую сейчас. Результат меня вполне устроил. Опыт у меня не большой, и вот я думаю, может я что-то не учел или не доглядел? Что скажите друзья, к чему следует быть готовым?

Друзья, кто собаку съел на оптимизации и бэктестинге? Прошу вашего совета.

Есть те, кто автоматизировал, бэктестил и оптимизировал свою ручную систему? Пытаюсь найти способы прогнать свою ТС на истории, но нет опыта в этом. Может быть вы подскажете как лучше и проще это сделать?

Тестирование стратегий - Walk Forward Test vs CV Fold Test

В классических задачах прогнозирования используются в основном различные Fold  тесты. Их логика весьма понятна и прозрачна – защитить алгоритм от переобучения и получить лучшие стационарные параметры регуляризации. Например, такие, как лямбда Тихонова, или, если речь идёт о  бустинге на деревьях решений – минимальное количество листьев.  Однако сообщество Smart Lab настоятельно рекомендовало нам провести Walk Forward тесты, логика которых нам мало понятна.

А если логика не понятна, то можно детально рассмотреть какой-нибудь простой пример.

 

 Тестирование стратегий - Walk Forward Test  vs  CV Fold Test

Пусть в качестве объекта прогнозирования у нас будет выступать простая синусоида с частотой ω и амплитудой А. Без применения сложных математических методов эта задача решается следующим образом:

  1. Берутся исторические данные
  2. На основе данных  подбираются параметры амплитуды, частоты и фазы.
  3. Исходя из полученных «динамических» переменных модели строится прогноз на будущее.


( Читать дальше )

Портфельная оптимизация как бустинг на «слабых» моделях

Часть 2.

В прошлой части мы подбирали такую комбинацию статистических оценок динамики акций, которая давала нам возможность стабильно выбирать портфель акций лучше среднерыночного,  с показателем Шарпа на 26% выше индексного.

Мы также пробовали составлять портфель из портфелей и портфель на основе портфеля оценок, но в силу высокой линейной зависимости оценок и полученных на них портфелей друг от друга Bagging ожидаемо не дал никакого результата.

Тем не менее, этот важный этап подготовительных работ – построение портфеля (или композиции портфелей) на простых, статистических оценках дал нам некоторую отправную точку, относительно которой мы будем рассматривать эффективность всех наших последующих нововведений.

Портфельная оптимизация как бустинг на «слабых» моделях
Рис. 6. Иллюстрация динамики волатильности акций США, входящих в состав индекса S&P 500.

 

Основную проблему стандартных методов мы видим в том, что они разработаны для стационарных стохастических процессов, в то время как любые финансовые (а зачастую природные, биологические и др.), временные ряды имеют нестационарную природу. Так, например, широко известно, что логарифмическое изменение стоимости акций является нестационарным процессом со склонностью к консолидации (кластеризации) волатильности.



( Читать дальше )

Адаптивный параболик. Подскажете, в чем его суть?

Друзья! Слышал, что есть такой индикатор «Адаптивный параболик», учитывающий волатильность рынка. Буду очень признателен, если кто-нибудь поделится информацией о его сути, и есть-ли где-нибудь формула данного индикатора?

....все тэги
UPDONW
Новый дизайн