Избранное трейдера jackan
В прошлой статье рассмотрено как можно получить информацию по финансовым инструментам. Дальше будет опубликовано несколько статей о том, что первоначально можно делать с полученными данными, как проводить анализ и составлять стратегию. Материалы составлены на основании публикаций в иностранных источниках и курсах на одной из онлайн платформ.
В этой статье будет рассмотрено, как рассчитывать доходность, волатильность и построить один из основных индикаторов.
import pandas as pd import yfinance as yf import numpy as np import matplotlib.pyplot as plt sber = yf.download('SBER.ME','2016-01-01')
Данная величина представляет собой процентное изменение стоимости акции за один торговый день. Оно не учитывает дивиденды и комиссии. Его легко рассчитать используя функцию pct_change () из пакета Pandas.
Как правило используют лог доходность, так как она позволяет лучше понять и исследовать изменения с течением времени.
# Скорректированая цена закрытия` daily_close = sber[['Adj Close']] # Дневная доходность daily_pct_change = daily_close.pct_change() # Заменить NA значения на 0 daily_pct_change.fillna(0, inplace=True) print(daily_pct_change.head()) # Дневная лог доходность daily_log_returns = np.log(daily_close.pct_change()+1) print(daily_log_returns.head())
Последние две недели на всех мировых рынках резко повысилась активность, количество биржевых данных выросло в 2-3 раза. Из-за этого у многих пользователей терминал QUIK начал безбожно тормозить и виснуть. Сервера брокеров также с трудом переваривают повышение нагрузки и наплыв клиентов, желающих что-либо купить-продать (по слухам кто-то из брокеров висел аж целую неделю))) ).
На Смарт-Лабе появилось несколько постов с советами как избавиться от тормозов. И меня сильно поразила неадекватность предлагаемых действий. Люди готовы покупать новое железо за бешеные деньги, создавать какие-то командные файлы и заниматься прочей ерундой. А нужно всего лишь включить голову и разобраться в причинах тормозов. Когда программисты разрабатывают какую-либо программу, они всегда оптимизируют ее для работы на определенном «средне статистическом» компьютере, закладывая при этом кратный запас по производительности. Если вдруг эта программа (QUIK) начинает неадекватно тормозить и виснуть на обычном современном компьютере — значит дело почти наверняка не в железе, и даже не в самой программе, а в ее конфигурации (настройках). Т.е. нам нужно правильно настроить терминал QUIK , а уже потом апгрейдить железо, менять туда-обратно версии и бухтеть на Смарт-лабе.
Статья о том, как получить ежедневные исторические данные по акциям, используя yfinance, и минутные данные, используя alpha vantage.
Как вы знаете, акции относятся к очень волатильному инструменту и очень важно тщательно анализировать поведение цены, прежде чем принимать какие-либо торговые решения. Ну а сначала надо получить данные и python может помочь в этом.
Биржевые данные могут быть загружены при помощи различных пакетов. В этой статье будут рассмотрены yahoo finance и alpha vantage.
Yahoo Finance
Сначала испытаем yfianance пакет. Его можно установить при помощи команды pip install yfinance. Приведенный ниже код показывает, как получить данные для AAPL с 2016 по 2019 год и построить скорректированную цену закрытия (скорректированная цена закрытия на дивиденды и сплиты) на графике.
# Import the yfinance. If you get module not found error the run !pip install yfianance from your Jupyter notebook import yfinance as yf # Get the data for the stock AAPL data = yf.download('AAPL','2016-01-01','2019-08-01') # Import the plotting library import matplotlib.pyplot as plt %matplotlib inline # Plot the close price of the AAPL data['Adj Close'].plot() plt.show()