Чтобы насладиться созерцанием стакана нам нужны следующие ингредиенты:Продолжаю сидеть на самоизоляции и учусь программировать на Python. Написал полноценный калькулятор для сравнения двух любых активов.
Считает такие показатели как:
✅ Ожидаемая доходность
✅ Волатильность
✅ Коэффициент Шарпа для каждого актива
✅ Корреляцию
✅ Бету
✅ Альфу
✅ Долю волатильности исследуемого актива в базовом (удобно для сравнения с индексными фондами или индексами, если их брать в качестве базового актива)
✅ Коэффициент Трейнора
✅ Альфу Дженсена

Можно задать период на котором необходимо произвести расчеты. Строить графики для сравнения.
Обновление содержит следующие изменения:
Тем, кто не читал предыдущий топик этой темы, рекомендую для начала ознакомиться с ним [1].
В комментариях к предыдущему топику меня критиковали за неоптимальность кода Python. Однако, текст читают люди с совершенно разной подготовкой — от почти не знающих Python или знающих другие языки программирования, до продвинутых пользователей. Последние легко могут обнаружить неоптимальность кода и заменить его своим. Тем не менее, код должен быть доступен и новичкам, возможно не обладающим знанием пакетов и продвинутых методов. Поэтому, в коде я буду, по возможности, использовать только базовые конструкции Python, не требующие глубоких знаний, и которые могут легко читаться людьми, программирующими на других языках. Вместе с тем, по мере изложения, без фанатизма, буду вводить и новые элементы Python.
Если вы хотите как-то улучшить или оптимизировать код, приводите его в комментариях — это только расширит и улучшит изложенный материал.
Ну, а сейчас мы займемся разработкой и тестированием индикаторов. Для начала нам нужна простейшая стратегия с использованием МА — его и построим. Самой лучшей по характеристикам МА является ЕМА. Формула ЕМА: