Избранное трейдера HareOFF
На примере Coca-Cola показываю, как работает один из простых методов фундаментального анализа. Суть подхода, его возможности и ограничения, а также подробный алгоритм использования — обо всем этом я рассказал в статье.
Дисклеймер: материал опубликован в ознакомительных целях и не является руководством к действию. Любые операции на финансовых рынках несут угрозу вашему кошельку. Никто, включая автора статьи, достоверно не знает, куда пойдут акции. Всегда учитывайте этот факт при принятии инвестиционных решений.
Оглавление
Шаг №1. Учим матчасть
Шаг №2. Разбираемся в сути Discount Dividend Model (DDM)
Шаг №3. Определяем текущие дивиденды Coca-Cola и вычисляем темп роста
Шаг №4. Прогнозируем темп роста и будущие дивиденды
Шаг №5. Определяем ставку дисконтирования
Шаг №6. Строим двухэтапную модель дисконтирования дивидендов
Шаг №7. Проводим анализ чувствительности
Шаг №8. Делаем выводы
Постскриптум
Навеяло этим постом от очередного энтузиаста: https://smart-lab.ru/blog/620330.php
Коллеги! Предлагается помнить, что нас довольно много, и ответственно относиться к предоставляемым возможностям бесплатно забирать данные с бирж и добрых брокеров.
Ну вставляйте вы вызовы sleep() в циклы, это же не ХФТ у вас!
С той стороны тоже могут сидеть не вполне пряморукие товарищи, которым может быть проще прикрыть эту всю халяву, чем делать так чтобы она всегда работала, кто бы какой своей поделкой в неё не долбил. Опять же чуть что начнёте возмущаться.
И если вы не в состоянии корректно написать закачивалку данных, то может вообще не стоит заниматься алготорговлей, это же минимум в сто раз сложнее!
Решил начать писать небольшие заметки по алгоритмической торговле и всему что с ней связано. Возможно, когда-нибудь расширю, склею и опубликую в виде книжки. Пока же это просто наброски заметок, сделанные на скорую руку.
Можно часто слышать от тех, кто торгует алгоритмически, да и просто систематически, такие понятия как «оверфиттинг», «курвафиттинг», «зафит» и прочие ругательства с корнем «фит». Что все это значит?
На самом деле, все эти слова, как правило, используются для описания одного и того же явления, являющегося врагом всех трейдеров, торгующих систематически и пытающихся оценить исторический перформанс своих торговых логик — а именно, что «живой» аут-оф-сампл перформанс на реальном счете, как правило, хуже ожиданий, полученных ими при проверке своих идей на истории. Например, при тестировании торговой логики на истории трейдер с помощью своей модели «зарабатывал» 30% годовых, а в реале может в среднем иметь 10% годовых. Разница 20% годовых — может объясняться именно оверфиттингом (если нет других факторов — например, некорректный учет комиссионных и проскальзываний, или ошибка в торговом коде; но прочие факторы легко устранить, в отличие от оверфиттинга). На картинке в начале статьи — пример перформанса некоторого фонда в бэктесте и в реальности, наглядно иллюстрирующий написанное выше.
Оверфиттинг является следствием комбинации одного или нескольких из следующих факторов, положительно влияющих на бэктест (результаты прогонки модели на истории), что и создает у трейдера завышенные ожидания от своей модели. В этой части мы рассмотрим основные источники оверфиттинга, в следующей — поговорим о способах избежания или минимизации оверфиттинга при историческом тестировании моделей.