В этой статье рассмотрим простейшую маркет-нейтральную стратегию из производных инструментов на индекса страха для S&P 500 (VIX). В основу положим контанго фьючерсов на VIX. Будем опережать SPY.
Использовать будем ETF на фьючерсы разных сроков. Всё это мы приготовим в Quantopian. Поехали!
Данный алгоритм появился из стороннего примера, найденного на Quantopian. Я его оптимизировал и сопроводил обильными комментариями на русском. Это не лучшее использование воронок (Pipeline). Но зато использует произвольные факторы (CustomFactor).
Всё это появилось по просьбе автора MindSpace.ru, Оксаны Гафаити. Поехали!
Ни для кого не секрет, что рынок криптовалют обладает феноменальной волатильностью, по причине своей молодости и отсутствию регулирования. На регулируемых рынках в борьбе с волатильностью помогает портфель, представляющий собой набор активов с периодической ребалансировкой.
Поможет ли портфель на рынке криптовалют? И позволит ли он сохранить и приумножить биткойн (BTC)? Мы в команде решили это проверить. Одним из условий создания портфеля была простота его поддержания. Подбор и поиск активов мы проводили с помощью Jupyter на Python. Разбору кода мы посвятим отдельную статью. А в этот раз рассмотрим, какие портфели нам удалось получить.
Анализ и поиск возможностей будем осуществлять за последний год, начиная с августа 2017 года. За этот короткий период были резкие взлёты монет, сопровождаемые не менее быстрыми падениями.
В продолжение статьи о вреде избыточной диверсификации создадим полезный инструментарий️ по подбору акций. После этого сделаем простую ребалансировку⚖️ и добавим уникальные условия технических индикаторов, которых так часто не хватает в популярных сервисах. А затем сравним доходность отдельных активов и различных портфелей.
Во всем этом задействуем Pandas и минимизируем количество циклов. Погруппируем времянные ряды и порисуем графиков. Познакомимся с мультииндексами и их поведением. И всё это в Jupyter на Python 3.6.
У. Баффет завещал жене после своей смерти️ вложить все средства в биржевой фонд ETF на S&P 500 (VOO) и жить в своё удовольствие️. Однако книги, интернет и финконсультанты призывают нас составлять диверсифицированные портфели с обязательным включением в них облигаций. К слову, о диверсификации Баффет тоже отзывается не лестно и призывает все яйца хранить в одной корзине, просто внимательно за ней присматривать.
В данной статье мы попробуем разобраться, стоит ли верить оракулу из Омахи или прислушаться к финансовым консультантам. А поможет нам в этом Python и Quantopian.
В этот раз повторим на Python индикатор KST (Know Sure Thing), созданный Мартином Прингом. Если вы подписаны на StockCharts.com, то вы получаете платную рассылку обзоров рынка от Джона Мэрфи и Мартина Принга. Принг в своих анализах постоянно ссылается на свой индикатор KST. И у него всегда всё складно и точно совпадает.
Я же в бессонных поисках граалей решил повторить индикатор KST и провести коротенький анализ за предыдущие 14 лет.