Время после нового года решил провести с пользой и окунуться в машинное обучение. Заняться Machine Learning — и посмотреть получится что‑то или нет с российским рынком акций на Московской бирже.
Моей целью было построить такую систему, которая будет учиться на истории и в перспективе торговать лучше чем случайное блуждание 50/50. Но из‑за комиссий и спреда подобные блуждания изначально отрицательны — чтобы выйти в плюс надо как минимум покрывать комиссии.

Если говорить о результатах очень кратко, то технически всё работает, но вот финансовый результат на грани безубыточности.
Если Вы только интересуетесь этой темой Вы можете посмотреть какие‑то шаги в моей статье, а если Вы уже опытный разработчик подобных систем, то можете подсказать что‑нибудь в комментариях.
Причём вся эта работа выглядит совершенно не так как показывается в фильмах про уолл‑стрит: фактически это написание скриптов и монотонный запуск и всё происходит полностью локально на компьютере.


На фоне текущего роста портфель обновил максимум и взял отметку в 70 млн рублей.
По совпадению я как раз завершил постепенный процесс увеличения перечня анализируемых акций, доведя их количество до 111 штук. На MOEX акций примерно в два раза больше, но у остальных совсем уж плохо с ликвидностью. В качестве потенциального направления развития можно добавить ETF, ДР, а в перспективе MOEX обещает и иностранные акции подвезти.
Для учета информации в нескольких валютах прийдется существенно переработать блок хранения данных. Опять же по совпадению прочитал пару книжек про Domain-driven design — руки чешутся переписать все чуть более грамотно.
Так же в последнее время прочитал множество статей про Reinforcement learning. Раньше никак не мог придуматься, как прикрутить RL к портфельной оптимизации, а тут вдруг возникло несколько идей. Надо будет поэкспериментировать, и возможно в итоге совершу закономерных шаг от DL к RL.