О некоторых особенностях, свойственных высокочастотным стратегиям, рассказывает Dr Jonathan Kinlay в своем блоге. Представляю здесь перевод его статьи.
Большинство инвесторов, вероятно, никогда не видели эквити высокочастотной стратегии. Есть объективные причины этого: в связи с типичной производительностью таких стратегий, фирмы, использующие их, мало нуждаются в привлечении стороннего капитала. Кроме того, HFT алгоритмы имеют ограничения по емкости, которая очень важна для институциональных инвесторов. Поэтому интересно наблюдать реакцию инвестора на прибыльность HFT стратегии, которую он видит впервые. Привыкший к коэффициенту Шарпа в диапазоне 0,5-1,5 или до 1,8, при удачном стечении обстоятельств, он бывает поражен тем, что такие стратегии показывают значения коэффициента, выражаемые двузначными числами.


Прошлая часть — см. в моем блоге.
В этой части разберем технику улучшения производительности стратегии, использующую множество моделей.
Одним из наиболее мощных методов улучшения прибыльности вашей модели является объединение нескольких алгоритмов в так называемое «множество». Теория состоит в том, что комбинируя разные модели и их предсказания, мы получаем более робастные результаты. Тесты показывают, что даже объединение простых моделей может быть производительнее более сложной, но единственной стратегии.
Существует три основных техники объединения:
Смешивание:
Смешивание основано на создании моделей, прогоняемых на немного различных тренировочных наборах и усреднения их результатов для получения одного предсказания. Тренировочный набор переделывается путем повторения или удаления вхождений данных, в результате чего получается несколько разных наборов. Этот процесс работает хорошо для нестабильных алгоритмов (например, деревья решений) или, если присутствует определенная степень случайности в процессе создания моделей ( как, например, начальные веса в нейронных сетях). Получив усредненное предсказание для коллекции моделей с высоким значением подгонки, мы можем уменьшить результирующую подгонку без увеличения недооценки, что приведет к лучшим результатам.
Основные принципы увеличения прибыльности алгоритмов автоматизированной торговли изложены в блоге Inovancetech. Представляю здесь перевод этой статьи. В ней использованы некоторые алгоритмы и результаты цикла про машинное обучение (часть 1, часть 2).
После построения алгоритма, вам нужно убедиться, что он робастен и будет генерировать прибыльные сигналы при реальной торговле. В данном посте мы представим 3 легких способа увеличить производительность вашей модели.
Прежде чем улучшать модель, вы должны определить базовую производительность стратегии. Самый лучший способ сделать это — протестировать модель на новых исходных данных. Однако, вы всегда владеете довольно ограниченным набором данных, несмотря на их множество, предоставляемое финансовыми институтами. Значит, вы должны тщательно обдумать, как использовать имеющийся набор. По этим причинам, самое лучшее — разделить его на три отдельных части.