Избранное трейдера antonbell
Продолжаем рассматривать алгоритмы построения улыбки волатильности. В этой статье будем находить «справедливые» цены опционов при помощи модели Хестона, которая относится к так называемым моделям стохастической волатильности. Хестон предложил использовать в качестве модели базового актива систему следующих уравнений:


Не путать с работорговлей :). Как автор блога об алгоритмической торговле, считаю нужным выкладывать эквити моих роботов, которые запущены на бирже в настоящее время. В заглавии поста результаты за март, в процентах от капитала на начало месяца. В боевых торгах алгоритмы принимают участие с 10 марта.
Немного расскажу об используемых роботах. Общая архитектура этих программ основана на структуре robot_uralpro, но значительно усовершенствована в плане гибкости, что позволяет добавлять любой новый алгоритм без перестройки основного скелета робота, вплоть до опционных стратегий. Новый робот торгует валютным фьючерсом Si, но применяются некоторые элементы старого алгоритма robot_uralpro. Всего реализовано 3 стратегии на данный момент, в торгах принимают участие пока только две, третья не набрала достаточного количества статистики, так как медленнее остальных, поэтому только тестируется. Сделана диверсификация по параметрам для каждого алгоритма на 10 разных наборов, следовательно, торгуют одновременно как бы 20 роботов. Стратегии основаны на наблюдениях, сделанных при тестировании математических моделей, никаких ценовых паттернов не используется. Роботы подключены к бирже через Plaza2, колокейшена нет, выбран обычный хостинг с минимальным пингом до плазовских IP. На данный момент он равен 3 мс. Средний раундтрип заявок составляет около 10 мс. Эквити за один день — 23.03.2015 — на графике ниже. Выбрал, конечно, один из лучших:)
Нашел Грааль, а именно, торговлю Активными акциями (Stocks in Play), анализ нескольких десятков сделок в два мегаотчетных дня показал наличие подавляющего большинства положительных сделок. Осталось перевести этот результат на реальную торговлю.
Два отчетных дня были невообразимо насыщены — каждый день в вочлисте около 120 акций, из них несколько десятков с предыдущих торговых дней. Результаты торговли в эти дни подтолкнули меня написать о ПРЕИМУЩЕСТВАХ торговли Активными Акциями (Stocks in Play) и выборе таких акций.
В чт проводил сделки «на бумаге» — отмечал входы в thinkorswim. После анализа получилось 77% положительных — напишу пост об этом позже.
Удивившись такому результату, решил проверить свои торговые правила в пт — совершал сделки в демо Авроре, входил по 30 акций. Привожу анализ.


Линейная регрессия часто используется для вычисления пропорции хеджирования в парном трейдинге. В идеальной ситуации коэффициенты этой регрессии — наклон линии регрессии и свободный член (пересечение) остаются всегда постоянными. Однако в реальности все, конечно, не так радужно, и значения этих параметров постоянно меняются во времени. Как правильно вычислять коэффициенты регрессии, чтобы избежать подгонки к текущей ситуации, рассматривается в статье "Online Linear Regression using a Kalman Filter". Для этой цели в данной публикации используется фильтр Калмана.
Для тестирования берутся исторические цены закрытия двух биржевых фондов ETF — австралийского EWA и канадского EWC с 2010 по 2014 год. Динамика цен этих фондов показывает взаимосвязь, что продемонстрировано на диаграмме рассеивания в заглавии поста. Однако по этому же графику видно, что эту взаимосвязь невозможно описать с помощью линейной регрессии с постоянными коэффициентами.