В этой статье рассмотрим простейшую маркет-нейтральную стратегию из производных инструментов на индекса страха для S&P 500 (VIX). В основу положим контанго фьючерсов на VIX. Будем опережать SPY.
Использовать будем ETF на фьючерсы разных сроков. Всё это мы приготовим в Quantopian. Поехали!
Данный алгоритм появился из стороннего примера, найденного на Quantopian. Я его оптимизировал и сопроводил обильными комментариями на русском. Это не лучшее использование воронок (Pipeline). Но зато использует произвольные факторы (CustomFactor).
Всё это появилось по просьбе автора MindSpace.ru, Оксаны Гафаити. Поехали!
У. Баффет завещал жене после своей смерти️ вложить все средства в биржевой фонд ETF на S&P 500 (VOO) и жить в своё удовольствие️. Однако книги, интернет и финконсультанты призывают нас составлять диверсифицированные портфели с обязательным включением в них облигаций. К слову, о диверсификации Баффет тоже отзывается не лестно и призывает все яйца хранить в одной корзине, просто внимательно за ней присматривать.
В данной статье мы попробуем разобраться, стоит ли верить оракулу из Омахи или прислушаться к финансовым консультантам. А поможет нам в этом Python и Quantopian.
В этот раз повторим на Python индикатор KST (Know Sure Thing), созданный Мартином Прингом. Если вы подписаны на StockCharts.com, то вы получаете платную рассылку обзоров рынка от Джона Мэрфи и Мартина Принга. Принг в своих анализах постоянно ссылается на свой индикатор KST. И у него всегда всё складно и точно совпадает.
Я же в бессонных поисках граалей решил повторить индикатор KST и провести коротенький анализ за предыдущие 14 лет.
Данная статья продолжает цикл анализа простых стратегий со стандартными индикаторами. Тестируем стратегии в Quantopian, а пишем на Python. В этот раз мы сравним индикатор Rate-of-Change (ROC) и популярное пересечение скользящих средних SMA(50) и SMA(200).
Дополнительно рассмотрим подход быстрого получения доходности и просадки простых стратегий в блокноте Jupyter.
В этот раз будем тестировать стратегию разворотов по сигналам 3-х-дневного индикатора RSI. Начнем с проведения анализа пересечения границ перепроданности/перекупленности методом, описанным в предыдущей статье.
Анализ и тесты будем проводить на Python, используем библиотеку Zipline и Quantopian.
Этой статьей мы продолжим улучшать результы автоматического поиска пар для торговли. Дополнительным фильтром будем использовать измерения, доступные после построения регрессии методом statsmodels.api.OLS(). Этот же фильтр будем применять к парам во время торговли.
Найденные пары проверим в Quantopian, а исходный код напишем на Python.
При торговле по стратегии «Парного трейдинга» часто встречаются пары, где цены каждого актива сильно отличаются друг от друга. Для получения лучшей доходности и сокращения риска необходимо правильно определить размер сделки по каждому активу.
Сегодня мы рассмотрим расчет дельты позиций используя метод наименьших квадратов (МНК).
Тестировать будем в Quantopian, а код пишем на Python.