Есть такая CNN, сверточная сеть то бишь. На вход ей подаются картинки, на которых она учится отличать собачек от кошечек. Меня это, относительно применения на фондовой бирже всегда привлекало.
Сначала определимся какие рисунки подносим CNN. В качестве рисунков мы можем подать:
Придумал интересный подход. Мож кого натолкнет на интересные идеи какие-то.
Сейчас начал торговать ML модели. С практической стороны с моделями какая сложность – там есть процесс предобработки данных – генерация признаков в основном (если с точки зрения трейдинговых данных заходить), поэтому нельзя просто сохранить модель, в другом месте загрузить и она будет работать, надо сохранить, загрузить, предобработать исходные данные к тому виду, к которому приучена модель и только тогда она будет работать. К счастью тонна сопутствующих трудозатрат убирается такой классной штукой как пайплайн – сейчас моя модель это 2 пайплайна – один для предобработки данных, другой для предикта (сама модель). Т.е. я где-то что-то рисечу, дальше автоматика упаковывает в пайплайны (2 на модель, как сказал). Все, могу кинуть эти 2 файла в папку с моделями, откуда их забирает торгующий блок и, собственно, отторговывает. Красота. Всякие мета-данные – тикер там, время удержания позиции и прочие мета-логики упаковываю или в сам пайплайн или в название файла. Красота.
Вернее так: что я увидел, обучая модели. Всякие подобные темы любят поднимать трейдеры, они отлично располагают для пространных рассуждений о рынке и жизни, а я это, можно сказать, увидел наглядно. В общем, наблюдения не что-то гениальное, мной открытое, не грааль, но я это наблюдаю.
Что я делаю:
Играюсь с моделями ML, играюсь гипер-параметрами – параметрами самих моделей непосредственно и моими какими-то входящими параметрами. Смотрю как меняются результаты в зависимости от этих параметров.
Что я увидел:
«Буржуазная печать широко разрекламировала новую науку — кибернетику. Эта модная лжетеория, выдвинутая группкой американских «учёных», претендует на решение всех стержневых научных проблем и на спасение человечества от всех социальных бедствий. Кибернетическое поветрие пошло по разнообразным отраслям знания: физиологии, психологии, социологии, психиатрии, лингвистике и др. По утверждению кибернетиков, поводом к созданию их лженауки послужило сходство между мозгом человека и современными сложными машинами.»
— Ярошевский М. Кибернетика — «наука» мракобесов. — Литературная газета. — 5 апреля 1952. — № 42(2915). — С. 4.

Обычно человек ходит по колее, но иногда система сбоит и случаются «эмм, а чё я раньше не задумывался, что можно…» и «хм, а ведь можно попробовать сделать…». В такие моменты можно выскакивать за пределы колеи и переходить в новую более интересную, выходить из зоны болотного комфорта в зону воодушевляющего дискомфорта.
Всегда ходил по колее (вернее, замкнутому циклу): математика не моё, у меня много своих преимуществ, математик не в их числе, не всем дано. И к нему прицеплялось: машинное обучение, нейронные сети, статистика и тер.вер. требуют математики – ну, значит, тоже не мое, ну значит без этого. А тут че-то осенило: а какого хрена!? Кстати, тот случай когда реклама сподвигла (назойливая реклама курсов обучения по Data Science). Сначала отмахивался, а в какой-то момент подумал: а почему бы и нет? – Да, страшно, да лень, да не уверен, что получится, да долго, да нет уверенности, что поможет и т.д. Хорошо подумал, уверенным движением руки смахнул все эти иррациональные возражения и страхи со стола и записался на курс.
Так что скоро, надеюсь, например, не буду просто пролистывать посты уважаемого А.Г., а, возможно, буду извлекать смысл.
Кстати, уже только при прочтении программы курса словил пару инсайтов применительно к фин. рынкам.
Глаза загорелись. Будет интересно.
Если вы опытный бэкендер и интересуетесь машинным обучением, мы будем рады с вами пообщаться. Наши эксперты по компьютерному зрению, обработке естественного языка, речевым технология и рекомендательным системам помогут вам окунуться в решение перспективных задач и развиваться
в интересном направлении.
Мы приглашаем бэкенд-разработчиков, которые уже приобрели достаточно опыта и точно знают, что в своих компетенциях им нужно сдвигаться в сторону ML, получить практические навыки — а не навыки учёного — в решении промышленных задач машинного обучения.
