Experts say ChatGPT could upend jobs across a range of Wall Street industries, from trading to investment banking.
«It's going to automate select tasks that knowledge workers are engaged in today so that they can focus on higher-value tasks,» Dylan Roberts, a partner at KPMG, told Insider.
Pengcheng Shi, a dean at the Rochester Institute of Technology's computer science department, agrees that certain Wall Street roles could be in jeopardy.
«At an investment bank, people are hired out of college, and spend two, three years to work like robots and do Excel modeling — you can get AI to do that,» Shi told the New York Post.
Трейдеры — как профессия вымрет скоро?
Основным автором этой статьи является Вастрик (известный техноблогер), а Павел Комаровский (RationalAnswer), Игорь Котенков (Сиолошная) и Кирилл Пименов оказывали ему посильную помощь в подготовке материала. Это первая из наших совместных статей про безопасность ИИ (но подробнее об этом уже в конце).
Добро пожаловать в 2023 год, когда мир снова помешался на искусственном интеллекте. Весь интернет соревнуется, кто еще какую задачу автоматизирует с помощью ChatGPT, и какой фейк от Midjourney лучше завирусится — а технобро-миллионеры, типа Илона Маска, подвозят фурами деньги в создание «настоящего» ИИ. Такого, который сможет сам учиться, развиваться и решать любые задачи, даже которые мы не умели решать раньше.
Всем привет, это опять статья от двух авторов! Как и в прошлый раз, за умные мысли и экспертизу в искусственном интеллекте отвечал Игорь Котенков (автор канала Сиолошная про машинное обучение, космос и технологии), а за подачу и кринжовые мемы отдувался Павел Комаровский (автор канала RationalAnswer про рациональный подход к жизни и финансам).
Мы предполагаем, что вы уже читали нашу предыдущую большую статью про эволюцию языковых моделей от T9 до ChatGPT с объяснением того, чем вообще являются нейронки, и как они работают – так что мы не будем заново объяснять самые базовые вещи. Вместо этого мы сразу нырнем в детали свежевышедшей модели GPT-4.
На всякий случай сразу оговоримся: у этой статьи два автора. За всю техническую часть (и за всё хорошее в статье) отвечал Игорь Котенков – широко известный чувак в узких кругах русскоязычной тусовки специалистов по искусственному интеллекту, а также автор канала Сиолошная про машинное обучение, космос и технологии. За мольбы «вот тут непонятно, давай как-нибудь попроще!» и за добавление кринжовых неуместных мемов был ответственен Павел Комаровский – автор канала RationalAnswer про рациональный подход к жизни и финансам.
Введение
Многие datascientists, желающие использовать ML на финансовых рынках, прочитали толстые книжки об инвестировании, может даже создавали модели с учетом прочитанного. И наверняка знают как правильно оценить полученные модели с точки зрения ML. Разобраться с этим необходимо, чтобы не было мучительно больно, когда прекрасная модель на бумаге, превращается в генератор убытков при практическом использовании. Однако оценка эффективности модели ML на бирже, довольно специфическая область, тонкости которой раскрываются только когда вы погружаетесь в процесс. Под процессом я понимаю трейдинг с частотой совершения сделок гораздо чаще «пара сделок в месяц, в течении полугода». Существует множество подводных камней, о наличии которых вы даже не подозреваете, пока смотрите на трейдинг извне. Я попробую вольно изложить свои мысли на данную тему, я покажу метрики, условно разбив их на 3 группы и обьясню их смысл, покажу свои любимые и о чем нужно подумать, если вы хотите практически использовать модели, а не повесить их на стеночку в красивой рамочке. Представлю метрики в табличном и графическом виде, показав их взаимосвязь. Сравню показатели моделей в виде «какую модель выбираю я» и «что выбираете вы» и кто тут больше ошибается. Для любителей кодов, приведу реализацию всего подсчитанного, так что можно сразу применить прочитанное для оценки своих моделей. Я не буду тут говорить о борьбе с переобучением или регуляризации или стратегиях кросвалидации — оставлю это на потом. Здесь мы начинаем со списка уже спрогнозированных сделок, с помощью transformer о которой я писал в прошлой статье. Поэтому данный текст будет его логическим продолжением, где я оценю модель с точки зрения ее практического использования.