Постов с тегом "Нейронные сети": 85

Нейронные сети


Человечество против искусственного интеллекта: может ли развитие нейросетей привести к катастрофе

История про «восстание машин» давно знакома всем любителям научной фантастики, но после взрывного роста возможностей нейросетевых языковых моделей (вроде ChatGPT) об этом риске заговорили и вполне серьезные исследователи. В этой статье мы попробуем разобраться – есть ли основания у таких опасений, или это всего лишь бред воспаленной кукухи?

Человечество против искусственного интеллекта: может ли развитие нейросетей привести к катастрофе
Илон Маск считает риск «глобальной катастрофы из-за ИИ» реальной проблемой – так что, может быть, и вам стоит разобраться, что там и как

Основным автором этой статьи является Вастрик (известный техноблогер), а Павел Комаровский (RationalAnswer), Игорь Котенков (Сиолошная) и Кирилл Пименов оказывали ему посильную помощь в подготовке материала. Это первая из наших совместных статей про безопасность ИИ (но подробнее об этом уже в конце).


Человечество vs Искусственный интеллект

Добро пожаловать в 2023 год, когда мир снова помешался на искусственном интеллекте. Весь интернет соревнуется, кто еще какую задачу автоматизирует с помощью ChatGPT, и какой фейк от Midjourney лучше завирусится — а технобро-миллионеры, типа Илона Маска, подвозят фурами деньги в создание «настоящего» ИИ. Такого, который сможет сам учиться, развиваться и решать любые задачи, даже которые мы не умели решать раньше.



( Читать дальше )

GPT-4: Чему научилась новая нейросеть, и почему это немного жутковато

В этой статье мы разберем новые удивительные способности последней языковой модели из семейства GPT (от понимания мемов до программирования), немного покопаемся у нее под капотом, а также попробуем понять – насколько близко искусственный интеллект подошел к черте его безопасного применения?

GPT-4: Чему научилась новая нейросеть, и почему это немного жутковато
Грег Брокман пытался убедить зрителей лайв-стрима с презентацией GPT-4, что новая модель нейросети – это в первую очередь круто, а не страшно

Всем привет, это опять статья от двух авторов! Как и в прошлый раз, за умные мысли и экспертизу в искусственном интеллекте отвечал Игорь Котенков (автор канала Сиолошная про машинное обучение, космос и технологии), а за подачу и кринжовые мемы отдувался Павел Комаровский (автор канала RationalAnswer про рациональный подход к жизни и финансам).

Мы предполагаем, что вы уже читали нашу предыдущую большую статью про эволюцию языковых моделей от T9 до ChatGPT с объяснением того, чем вообще являются нейронки, и как они работают – так что мы не будем заново объяснять самые базовые вещи. Вместо этого мы сразу нырнем в детали свежевышедшей модели GPT-4.



( Читать дальше )

ChatGPT в телеге

Сегодня нашел в телеге этого бота. В описании утверждают, что это тот самый ChatGPT, использует официальное API и модель chatgpt-3.5-turbo. Я использовал chatgpt_advanced_bot и задал несколько простых вопросов
ChatGPT в телеге


( Читать дальше )

Эволюция нейросетей от Т9 до ChatGPT: объясняем на простом русском, как работают языковые модели

В последнее время нам почти каждый день рассказывают в новостях, какие очередные вершины покорили языковые нейросетки, и почему они уже через месяц совершенно точно оставят лично вас без работы. При этом мало кто понимает – а как вообще нейросети вроде ChatGPT работают внутри? Так вот, устраивайтесь поудобнее: в этой статье мы наконец объясним всё так, чтобы понял даже шестилетний гуманитарий!

Эволюция нейросетей от Т9 до ChatGPT: объясняем на простом русском, как работают языковые модели
OpenAI (компанию, сделавшую ChatGPT) основали в 2015 году именно вот эти двое парнишек – кто бы тогда знал, во что это в итоге выльется...

На всякий случай сразу оговоримся: у этой статьи два автора. За всю техническую часть (и за всё хорошее в статье) отвечал Игорь Котенков – широко известный чувак в узких кругах русскоязычной тусовки специалистов по искусственному интеллекту, а также автор канала Сиолошная про машинное обучение, космос и технологии. За мольбы «вот тут непонятно, давай как-нибудь попроще!» и за добавление кринжовых неуместных мемов был ответственен Павел Комаровский – автор канала RationalAnswer про рациональный подход к жизни и финансам.



( Читать дальше )

О практической пользе transformer для торговли на бирже

 Введение

     Многие datascientists, желающие использовать ML на финансовых рынках, прочитали толстые книжки об инвестировании, может даже создавали модели с учетом прочитанного. И наверняка знают как правильно оценить полученные модели с точки зрения ML. Разобраться с этим необходимо, чтобы не было мучительно больно, когда прекрасная модель на бумаге, превращается в генератор убытков при практическом использовании. Однако оценка эффективности модели ML на бирже, довольно специфическая область, тонкости которой раскрываются только когда вы погружаетесь в процесс. Под процессом я понимаю трейдинг с частотой совершения сделок гораздо чаще «пара сделок в месяц, в течении полугода». Существует множество подводных камней, о наличии которых вы даже не подозреваете, пока смотрите на трейдинг извне. Я попробую вольно изложить свои мысли на данную тему, я покажу метрики, условно разбив их на 3 группы и обьясню их смысл, покажу свои любимые и о чем нужно подумать, если вы хотите практически использовать модели, а не повесить их на стеночку в красивой рамочке. Представлю метрики в табличном и графическом виде, показав их взаимосвязь. Сравню показатели моделей в виде «какую модель выбираю я» и «что выбираете вы» и кто тут больше ошибается. Для любителей кодов, приведу реализацию всего подсчитанного, так что можно сразу применить прочитанное для оценки своих моделей. Я не буду тут говорить о борьбе с переобучением или регуляризации или стратегиях кросвалидации — оставлю это на потом. Здесь мы начинаем со списка уже спрогнозированных сделок, с помощью transformer о которой я писал в прошлой статье. Поэтому данный текст будет его логическим продолжением, где я оценю модель с точки зрения ее практического использования.



( Читать дальше )

Машинное обучеине и трейдинг

    • 10 марта 2021, 12:30
    • |
    • zzznth
      Популярный автор
  • Еще
Проявлением наибольшего милосердия в нашем мире является, на мой взгляд, неспособность человеческого разума связать воедино все, что этот мир в себя включает. Мы живем на тихом островке невежества посреди темного моря бесконечности, и нам вовсе не следует плавать на далекие расстояния.

На Смартлабе что-то активизировались дискуссии о возможности использования методов машинного обучения (нейронных сетей как их частный случай) в трейдинге. У меня сложилось ощущение, что дискутирующие совсем не понимают что это за зверь такой — машинное обучение (ML) и зачем он нужен.

Предположим есть задача: зная силу, с которой ударяют по мячику и его массу описать его движение. Можно ли эту задачу решить методами ML? Ну, наверное можно, но не нужно :) Классическая механика сделает это куда быстрее, надежнее, точнее. Или же пример поближе: зная себестоимость, среднюю цену продажи и объем продаж можно предсказать валовую прибыль.

А что если мы не знаем массу мячика? Ну, можно провести один или несколько опытов, а по ним уже, зная (из механики) уравнения движения, её определить, чтобы в дальнейшем использовать для предсказаний. Опять пример поближе: узнав маржу по первому кварталу, и зная производственные планы, можно прикинуть прибыль за год (привет, СарНПЗ)!

( Читать дальше )

....все тэги
UPDONW
Новый дизайн