Поиск
Продолжение. Начало здесь.
Но как же изменится среднее отклонение оптимизированного портфеля за пределами выборочного контроля, по сравнению с с 1/N? Ниже приведен скрипт для проведения экспериментов с различными структурами портфеля, периодами возврата, ограничениями значений и отклонениями:
Продолжение. Начало здесь.
Для долгосрочных портфелей вы не сможете использовать такой же высокий леверидж Форекса или инструментов CFD, которые вы предпочитаете использовать для своих краткосрочных стратегий. Вместо этого вы обычно инвестируете в акции, ETF или подобные инструменты. Они предлагают несколько преимуществ для алго-трейдинга:
— Никаких игр «кто кого». В долгосрочной перспективе, акции и индекс ETF имеют положительную среднюю окупаемость благодаря дивидендам и накопленным значениям, в то время как валютные пары Форекса и индексы CFD имеют отрицательную среднюю окупаемость вследствие сборов за своп/пролонгацию кредита.
— Серьезные брокеры. Все брокеры фондовой биржи/ETF контролируются, чего нельзя сказать о брокерах Forex/CFD.
Большинство трейдинговых систем относятся к типу тех, на которых можно разбогатеть быстро. Они используют временную низкую производительность рынка и стремятся к ежегодным прибылям в 100% областей. Они требуют постоянного контроля и адаптации к условиям рынка, но даже при этом имеют ограниченное срок службы. Их истечение срока действия часто сопровождается большими потерями. Но что если вы, тем не менее, собрали некоторые привлекательные прибыли, и теперь хотите перенести их в более безопасное и надежное место? Положить деньги под подушку? Отнести их в банк? Вложить в хедж-фонды? Очевидно, что все это идет вразрез с кодексом чести алготрейдера. Так что вот вам альтернатива.
Старомодный метод инвестирования предполагает покупку некоторого количества низкорисковых акций и длительное ожидание. У любого портфеля акций есть определенный средний возврат и определенное колебание значений; обычно вы хотите минимизировать последний и максимизировать первый. Оптимальное распределение капитала среди компонентов портфеля производит или максимальный средний возврат для данного позволенного колебания, или минимальное колебание – соответственно, минимальное расхождение – для данного среднего возврата. Это оптимальное распределение часто очень отличается от инвестирования той же суммы во все N-компоненты портфеля. Простой способ решения этого среднего значения / расхождения оптимизации был опубликован 60 лет назад Гарри Марковицем, за что он позже получил Нобелевскую премию.