машинное обучение


Машинное обучение, продвинутый сантимент, предложение для смартлаба

Со времен моей алго торговли и применения машин лернинга имеется у меня идейка такого плана, всем будет по фану.
Помнится был индекс оптимизма на смартлабе,  надо сделать его более интеллектуальным.
Как и прежде  каждый аккаунт использует тринарную логику позитив-нейтрал-негатив для сантимента, но сантимент основать не в лоб,
а на основе алгоритма рандом форест который будет фильтровать слабозначимые вводы от неинформированный трейдеров и давать больший вес информированным.
Можно довольно просто организовать бэктест в реальном времени назвать систему «смартлабер» или типа того.
Если интересно обращайтесь, помогу как с  реализацией так и с бэктестом.

Трейдинг и машинное обучение с подкреплением.

В статье рассмотрено, как машинное обучение с подкреплением может применяться для трейдинга финансовых рынков и криптовалютных бирж.

Трейдинг и машинное обучение с подкреплением.

Академическое сообщество Deep Learning в основном находится в стороне от финансовых рынков. В силу ли того, что у финансовой индустрии не лучшая репутация, что решаемые проблемы не кажутся слишком интересными для исследований, или же просто из-за того, что биржевые данные трудно и дорого получать.

В этой статье показывается, что обучение с подкреплением для трейдинга финансовых рынков и криптовалют может быть чрезвычайно интересной исследовательской проблемой. Хотя эта область не получила достаточного внимания со стороны научного сообщества, обучение с подкреплением на примере трейдинга также представляет существенный интерес для развития многих смежных областей, например, обучения алгоритмических агентов для многопользовательских игр.



( Читать дальше )

Продолжаю изучать ML

Добрался до 5 недели Курса Яндекса и ВШЭ по машинному обучению. После достаточно напряжного начала, когда было необходимо поставить и освоить кучу программ, далее обучениях пошло достаточно просто — лекции вполне доступные, а задания решаются в несколько строчек кода, особенно если немного покопаться в описании библиотек.

Дополнительно решил послушать лекции Школы анализа данных Яндекса — материалы во многом пересекаются, но охват больше и раскрывается много интересных интерпретаций алгоритмов машинного обучения и их взаимосвязей.


Записался на курс по Машинному обучению

Записался на курс Введение в машинное обучение Яндекса и ВШЭ. Лекции достаточно легкие, но практические задания даются непросто, так как знания по программированию близки к нулю. Возможно дальше пойдет легче, но пока кучу времени уходит на установку и освоение софта, чтение  документации к библиотекам, освоение регулярных выражений и т.д. Первый блок заданий удалось сделать.


Роботы наступают. Развитие технологий и будущее без работы. Мартин Форд. Конспект книги. Глава 4 Белые воротнички под угрозой

Глава 4. Белые воротнички под угрозой

Система Quill способна практически мгновенно формировать бизнес-отчеты с заданной периодичностью — и все это без вмешательства человека http://narrativescience.com

Пример технологии Quill (Система написания нарративных текстов) демонстрирует, насколько уязвимыми для автоматизации оказываются задачи, которые когда-то считались исключительной прерогативой высококвалифицированных профессионалов с высшим образованием. Опрос экспертов: «Какой будет доля новостных материалов, написанных с помощью программных алгоритмов, в ближайшие 5 лет. Ответ: более 90 %»

Деятельность компании Target, Inc. является примером куда более спорного подхода к использованию огромных массивов чрезвычайно подробных данных. Компания с  очень большой долей вероятности предсказывать наличие беременности на раннем сроке у покупательниц на основе анализа продаж по двадцати пяти различным видам косметической и медицинской продукции. Проводимый компанией анализ был настолько точным, что даже позволял с высокой степенью точности определять срок беременности у конкретной женщины. Получив эти данные, сотрудники Target начинали забрасывать женщин предложениями о покупке товаров для беременных, да еще и на столь раннем сроке, что во многих случаях ближайшее окружение женщины даже не знало о ее положении.



( Читать дальше )

Numerai

Алё народ, алготрейдеры. На Нумераях (https://numer.ai) кто тусует? Квинтессенция алготрейдинга же, и в 100500 раз лучше чем любой проп )

Нейросети: как искусственный интеллект помогает в бизнесе и жизни

Оригинал опубликован на blog.dti.team

Читать предыдущее исследование: 
Интернет вещей

В работе Oxford Martin School 2013 года говорилось о том, что 47% всех
рабочих мест может быть автоматизировано в течение следующих 20 лет. Основным драйвером этого процесса является применение искусственного интеллекта, работающего с большими данными, как более эффективной замены человеку.

Машины теперь способны решать все больше процессов, за которые раньше отвечали люди. Кроме того, делают это качественнее и во многих случаях дешевле. О том, что это значит для рынка труда, в июле этого года говорил Герман Греф, выступая перед студентами Балтийского федерального университета им. Канта:

“Мы перестаём брать на работу юристов, которые не знают, что делать с нейронной сетью. <...> Вы — студенты вчерашнего дня. Товарищи юристы, забудьте свою профессию. В прошлом году 450 юристов, которые у нас готовят иски, ушли в прошлое, были сокращены. У нас нейронная сетка готовит исковые заявления лучше, чем юристы, подготовленные Балтийским федеральным университетом. Их мы на работу точно не возьмем.”



( Читать дальше )

Часть 3: Reminiscences of machine learning operator, или поездка на Красное Море

Предыдущие части сериала про машинное обучение 
Часть 1. я думал-думал, я все понял — про машинное обучение в применении к трейдингу
Часть 2. грааль почти не виден
Часть 3: Reminiscences of machine learning operator, или поездка на Красное Море

вот все говорят, что Смартлаб читать — только время терять.
Я не соглашусь. 
Иногда можно встретить очень умных людей, и получить полезную инфу.
В комментариях к одному из моих предыдущих постов про машинное обучение, уважаемый пользователь AlexeyT сказал, что adaboost -алгоритм для лошков, и все пацаны на районе давно используют xgboost.

Мне стало стыдно перед пацанами, быстренько почитал про xgboost, не без танцев с бубном поставил его на свой третий питон, и начал фигачить торговую систему, уже на новом алгоритме.
По ходу нашел кучу багов, пофиксил их по мере сил.
Подключил к брокеру, настроил все эти его кривые web apis, и понеслось !
Пока что, результатом работы системы стала эпичная поездка на Красное Море (sea of red). С глубоким погружением к рыбам в акваланге. 



( Читать дальше )

Нейронные сети и машинное обучение

Всем привет! поделитесь пожалуйста своими мнениями: являются ли нейронные сети таким уж эффективным методом построения стратегий. Существует мнение, что все эти генетические алгоритмы, машинное обучение и т.д. и бесконечные оптимизации-переоптимизации не дают такого выхлопа в виде правильных входов как об этом говорят, иначе все бы кто задал машине обучаться через месяц пересели бы за руль Бентли) может все это не сильно лучше теханализа…

Применение наивного байесовского классификатора на R для поиска закономерностей и прогнозирования

В последнее время изучаю R и машинное обучение. 

Мои статьи про R, машинное обучение, количественный анализ

В этом посте я расскажу о том, как применить машинное обучение для поиска закономерностей и прогнозирования.

Использовал эту статью: Применение машинного обучения в трейдинге

Начнем с проверки того, работают ли тренды и как влияет день недели на направление движения цены. И если работают, насколько они смещают вероятность в нашу сторону. Применим для этого наивный байесовский классификатор. 

Теорема Байеса в теории вероятностей, как теорема Пифагора в геометрии.

Байесовская вероятность — это интерпретация понятия вероятности, используемая в байесовской теории. Вероятность определяется как степень уверенности в истинности суждения. Для определения степени уверенности в истинности суждения при получении новой информации в байесовской теории используется теорема Байеса. 

( Читать дальше )

....все тэги
Регистрация
UPDONW