Избранное трейдера Емельянов Иван
Начинающие (да и не только) инвесторы часто задаются вопросом о том, как отобрать для себя идеальное соотношение активов входящих в портфель. Часто (или не очень, но знаю про двух точно) у некоторых брокеров эту функцию выполняет торговый робот. Но заложенные в них алгоритмы не раскрываются.
В этом посте будет рассмотрено то, как оптимизировать портфель при помощи Python и симуляции Монте Карло. Под оптимизацией портфеля понимается такое соотношение весов, которое будет удовлетворять одному из условий:
Для расчета возьмем девять акций, которые рекомендовал торговый робот одного из брокеров на начало января 2020 года и так же он устанавливал по ним оптимальные веса в портфеле: 'ATVI','BA','CNP','CMA', 'STZ','GPN','MPC','NEM' и 'PKI'. Для анализа будет взяты данные по акциям за последние три года.
#Загружаем библиотеки import pandas as pd import yfinance as yf import numpy as np import matplotlib.pyplot as plt # Получаем данные по акциям ticker = ['ATVI','BA','CNP','CMA', 'STZ','GPN','MPC','NEM', 'PKI'] stock = yf.download(ticker,'2017-01-01', '2019-01-31')
После всех вычислений, приведенных в этой и этой публикациях, можно углубиться в статистический анализ и рассмотреть метод наименьших квадратов. Для этой цели используется библиотека statsmodels, которая позволяет пользователям исследовать данные, оценивать статистические модели и выполнять статистические тесты. За основу были взяты эта статья и эта статья. Само описание используемой функции на английском доступно по следующей ссылке.
Сначала немного теории:
О линейной регрессии
Линейная регрессия используется в качестве прогнозирующей модели, когда предполагается линейная зависимость между зависимой переменной (переменная, которую мы пытаемся предсказать) и независимой переменной (переменная и/или переменные, используемые для предсказания).
# Выделяю скорректированную цену закрытия adj_close_px = sber['Adj Close'] # Вычисляю скользящую среднию moving_avg = adj_close_px.rolling(window=40).mean() # Вывожу результат print(moving_avg[-10:])
# Вычисление короткой скользящей средней sber['40'] = adj_close_px.rolling(window=40).mean() # Вычисление длинной скользящей средней sber['252'] = adj_close_px.rolling(window=252).mean() # Построение полученных значений sber[['Adj Close', '40', '252']].plot(figsize=(20,20)) plt.show()
В прошлой статье рассмотрено как можно получить информацию по финансовым инструментам. Дальше будет опубликовано несколько статей о том, что первоначально можно делать с полученными данными, как проводить анализ и составлять стратегию. Материалы составлены на основании публикаций в иностранных источниках и курсах на одной из онлайн платформ.
В этой статье будет рассмотрено, как рассчитывать доходность, волатильность и построить один из основных индикаторов.
import pandas as pd import yfinance as yf import numpy as np import matplotlib.pyplot as plt sber = yf.download('SBER.ME','2016-01-01')
Данная величина представляет собой процентное изменение стоимости акции за один торговый день. Оно не учитывает дивиденды и комиссии. Его легко рассчитать используя функцию pct_change () из пакета Pandas.
Как правило используют лог доходность, так как она позволяет лучше понять и исследовать изменения с течением времени.
# Скорректированая цена закрытия` daily_close = sber[['Adj Close']] # Дневная доходность daily_pct_change = daily_close.pct_change() # Заменить NA значения на 0 daily_pct_change.fillna(0, inplace=True) print(daily_pct_change.head()) # Дневная лог доходность daily_log_returns = np.log(daily_close.pct_change()+1) print(daily_log_returns.head())
Статья о том, как получить ежедневные исторические данные по акциям, используя yfinance, и минутные данные, используя alpha vantage.
Как вы знаете, акции относятся к очень волатильному инструменту и очень важно тщательно анализировать поведение цены, прежде чем принимать какие-либо торговые решения. Ну а сначала надо получить данные и python может помочь в этом.
Биржевые данные могут быть загружены при помощи различных пакетов. В этой статье будут рассмотрены yahoo finance и alpha vantage.
Yahoo Finance
Сначала испытаем yfianance пакет. Его можно установить при помощи команды pip install yfinance. Приведенный ниже код показывает, как получить данные для AAPL с 2016 по 2019 год и построить скорректированную цену закрытия (скорректированная цена закрытия на дивиденды и сплиты) на графике.
# Import the yfinance. If you get module not found error the run !pip install yfianance from your Jupyter notebook import yfinance as yf # Get the data for the stock AAPL data = yf.download('AAPL','2016-01-01','2019-08-01') # Import the plotting library import matplotlib.pyplot as plt %matplotlib inline # Plot the close price of the AAPL data['Adj Close'].plot() plt.show()