
Учет комиссий, проскальзывания и риск-менеджмента
Отбор торговых сессий по критериям волатильности (импульсы ≥5% за 10 минут)
Дискретное пространство действий: LONG, SHORT, CLOSE, HOLD
Reward shaping для контроля поведения
Полные логи бэктеста и визуализации
Публикация сигналов в реальном времени (Telegram)
Доходность: +144.23%
Sharpe: 1.85, Sortino: 2.05
Прибыльных дней: 78.57%
Сделок: 112 (~2 в день), включая SL/TP
Среднесуточная доходность: +1.61%



На фоне текущего роста портфель обновил максимум и взял отметку в 70 млн рублей.
По совпадению я как раз завершил постепенный процесс увеличения перечня анализируемых акций, доведя их количество до 111 штук. На MOEX акций примерно в два раза больше, но у остальных совсем уж плохо с ликвидностью. В качестве потенциального направления развития можно добавить ETF, ДР, а в перспективе MOEX обещает и иностранные акции подвезти.
Для учета информации в нескольких валютах прийдется существенно переработать блок хранения данных. Опять же по совпадению прочитал пару книжек про Domain-driven design — руки чешутся переписать все чуть более грамотно.
Так же в последнее время прочитал множество статей про Reinforcement learning. Раньше никак не мог придуматься, как прикрутить RL к портфельной оптимизации, а тут вдруг возникло несколько идей. Надо будет поэкспериментировать, и возможно в итоге совершу закономерных шаг от DL к RL.