Несколько недель назад я опубликовал статью о том, как превратить обычный диктофон в инструмент для расшифровки речи с помощью OpenAI Whisper. Идея была создать бесплатную и приватную систему ИИ диктофона, которая избавляет от необходимости переслушивать аудиозаписи лекций или выступлений.

В процессе настройки я боролся с несовместимостью библиотек, подбирал нужные версии драйверов и вручную собирал рабочее окружение. В комментариях мне справедливо заметили: «Вместо всей этой возни можно было найти готовый Docker-контейнер и поднять всё одной командой». Звучало логично, и я с энтузиазмом принял этот совет. Я ведь верю людям в интернете.
Новая идея — не просто расшифровывать речь, а разделять её по голосам — как на совещании или встрече. Это называется диаризацией, и для неё существует продвинутая версия — WhisperX. Цель была проста — получить на выходе не сплошное полотно текста, а готовый протокол встречи, где понятно, кто и что сказал. Казалось, с Docker это будет легко.
В новостях всё чаще говорят об «ИИ‑диктофонах» — гаджетах, которые записывают каждый ваш разговор в течение дня, отправляют аудио в облако, превращают его в текст и даже готовят краткую сводку по итогам. Звучит футуристично, но такие решения стоят дорого, требуют постоянной подписки и вызывают вопросы о приватности.
Лично мне идея тотальной записи кажется избыточной. Зато куда практичнее другая задача: получить точную текстовую расшифровку лекции, доклада или публичного выступления. Чтобы потом не переслушивать часы аудио, а быстро найти нужную цитату или мысль простым поиском по тексту.
В этой статье я покажу, как построить такую систему без платных подписок и полностью под вашим контролем. Всё, что нужно — обычный диктофон за 1–3 тыс. рублей или даже просто приложение на телефоне — тогда затраты вообще равны нулю, и набор бесплатных, открытых программ, которые работают на вашем компьютере. Я купил диктофон для теста и поделюсь результатами.