Михаил Шардин

Читают

User-icon
133

Записи

24

Раздельное тестирование на скриптовом языке TradingView выходов торговой системы: обычный трейлинг стоп и ATR стоп

В трейдинге акцент часто смещён в сторону поиска идеальных входов, тогда как стратегии выхода остаются в тени. Между тем именно выходы определяют соотношение прибыли и убытков. Раздельное тестирование помогает изолировать входы и оценить, как разные методы управления позицией влияют на результат. В этой статье входы будут выполняться с 50% вероятностью — это устраняет фактор предсказуемости и позволяет объективно сравнивать эффективность различных стратегий выхода.

В статье тестирую две стратегии трейлинг-стопов для Московской биржи на фьючерсном контракте USD/RUB (Si) на часовом таймфрейме, используя язык Pine Script в TradingView.

 Под капотом Pine Script: как устроен и для чего используется язык TradingView

Цель исследования и описание общего подхода

Главный вопрос исследования — какой метод трейлинг-стопа показывает лучшие результаты при одинаковых входах: фиксированный процентный или адаптивный ATR? Простой трейлинг-стоп строго ограничивает риск, но полностью игнорирует рыночную волатильность. В отличие от него, ATR-трейлинг, основанный на значении среднего истинного диапазона, автоматически подстраивается под текущие колебания рынка и способен удерживать прибыль в затяжных трендах.



( Читать дальше )

Прокачай свой TradingView: введение в мир Pine Script

Pine Script — это язык программирования, разработанный командой TradingView как Domain Specific Language, то есть специализированный язык для решения конкретной задачи — анализа и визуализации финансовых данных. Он создан для тех, кто хочет строить собственные индикаторы, тестировать торговые стратегии и делать всё это прямо в интерфейсе графика — без установки Python, без импорта исторических котировок и без настройки среды разработки.

Pine Script предельно прост по синтаксису, но в то же время достаточно мощный, чтобы покрыть 95% потребностей розничного трейдера. В нём предусмотрены ключевые блоки: работа с таймсериями, доступ к фундаментальным данным, рисование на графике и даже поддержка таблиц.

Прокачай свой TradingView: введение в мир Pine Script

Базовый синтаксис: как читать и писать код

Pine Script создан с акцентом на простоту: даже если вы раньше не писали код на нём, освоить базовые конструкции можно за вечер. У каждого скрипта есть чёткая структура, и разобраться в ней — первый шаг к созданию собственного инструмента на TradingView.



( Читать дальше )

CAN SLIM, Баффетт и Weiss на практике: можно ли повторить стратегии гуру с помощью своего скринера?

Хочу поделиться своим опытом разработки скринера и бектестера для анализа акций на основе фундаментальных данных. Это не только автоматизация, но и способ глубже разобраться в инвестиционных стратегиях, которые можно заложить в алгоритм.

Фундаментальный анализ — это метод оценки акций, основанный на финансовых показателях компаний, таких как прибыль, выручка, коэффициенты ликвидности и другие экономические параметры. В отличие от технического анализа, который фокусируется на движении цен, фундаментальный анализ помогает определить реальную стоимость компании и ее перспективы в долгосрочной перспективе.

При этом фундаментальный анализ не так популярен среди частных инвесторов, как технический анализ, поскольку требует глубокого изучения отчетности, макроэкономических факторов и финансовых коэффициентов.

Хочу создать собственный скринер и бектестер для анализа акций по фундаментальным показателям. Чтобы сделать это правильно, нужно понимать не только программирование, но и сам предмет — фундаментальный анализ. В этой статье я разбираюсь какие вообще существуют подходы, а также ищу источники данных.



( Читать дальше )

Заметка на тему индикатора измерения силы тренда

Понимание силы тренда помогает трейдерам оценить устойчивость движения цены и находить оптимальные точки входа и выхода. Идея индикатора взята из комментария Ийона Тихого (https://smart-lab.ru/mobile/topic/1119895/#comment17905643): он предложил измерять силу тренда через относительное отклонение цены от средней. Формула проста: разница между ценой и средней, деленная на среднюю. Это позволяет оценить тренд независимо от абсолютных значений цены.

В тексте привожу открытый исходный код индикатора для того, чтобы любой человек мог проверить его в своём TradingView.

Теоретическое обоснование

Индикатор силы тренда показывает, насколько цена отклоняется от своего среднего значения. Он рассчитывается по формуле:

Сила тренда = (Цена – Средняя) / Средняя × 100

Где:

Цена – текущая цена актива (например, цена закрытия свечи).

Средняя – значение скользящей средней (например, 21-периодная экспоненциальная средняя EMA).

Почему деление на среднюю удобнее?

Абсолютное отклонение цены от средней меняется в зависимости от уровня цены актива. Например, отклонение в 10 рублей на акции стоимостью 100 рублей и 1000 рублей будет восприниматься по-разному. Деление на среднюю нормализует это значение, позволяя объективно сравнивать силу тренда на разных инструментах и таймфреймах.



( Читать дальше )

Поиск ликвидных облигаций на питоне

На Московской бирже торгуется более 2500 облигаций, но большая часть из них неликвидна — в стакане почти нет предложений и сделок совершается крайне мало. Это затрудняет покупку и продажу таких бумаг. При этом известные мне публичные сервисы не суммируют объемы торгов за период, поэтому сложно быстро найти облигации с высокой ликвидностью.

Пять лет назад написал Node.js-скрипт, затем адаптировал его для Google Таблиц, а теперь разрабатываю Python версию. При помощи сообщества на GitHub эта Python версия идёт к созданию полноценной библиотеки с расширенными возможностями: автоматический поиск ликвидных облигаций, расчет денежных потоков, сбор новостей по эмитентам и вычисление оптимального объема покупки. Все это направлено на помощь простым инвесторам, вроде нас с вами, чтобы оперативно находить выгодные инвестиционные инструменты и принимать решения на основе актуальной информации.
Поиск ликвидных облигаций на питоне

Критерии выбора ликвидных облигаций на Московской Бирже

Ликвидность это один из ключевых параметров, поскольку даже высокодоходная бумага бесполезна, если её невозможно купить. В моём скрипте для поиска облигаций используются несколько основных критериев:



( Читать дальше )

Тестировании торговой системы Александра Резвякова для фьючерсов Московской биржи с использованием Python

В этой статье расскажу о том, как воспроизвел и протестировал торговую систему для фьючерсов Московской биржи, основанную на идеях Александра Резвякова. Недавно, просматривая раздел алготрейдинга на Смартлабе, я наткнулся на видео с его выступления на конференции 2024 года под названием "5-6 идей для построения прибыльной торговой системы на фьючерсах". Меня привлекла четкость и понятность предложенных им правил торговли.

Поскольку я активно занимаюсь автоматизацией процессов и стремлюсь глубже изучить возможности Python библиотеки backtesting.py, мне показалось это хорошей идеей для практического применения.

Хотя я лично не знаком с Александром, полагаю, что публичное представление идеи предполагает возможность её независимого анализа и тестирования сообществом трейдеров и программистов.
Тестировании торговой системы Александра Резвякова для фьючерсов Московской биржи с использованием Python

Обзор стратегии Александра Резвякова на фьючерсах

Основная идея — открывать сделки в строго определенное время и использовать структуру рынка последних дней для принятия решений.

Правила входа



( Читать дальше )

Где можно получить исторические фундаментальные данные по российским компаниям через API?

Добрый день!

Ищу решение для автоматизированного получения исторических фундаментальных данных по российским компаниям. Нужна история изменения P/E, P/S, ROE, EPS, выручки и других показателей за несколько лет для построения скринера и проведения фундаментального анализа.

Проанализировал два доступных API, но везде есть ограничения:

T-Invest API

GetAssetFundamentalsResponse(fundamentals=[
StatisticResponse(asset_uid='40d89385-a03a-4659-bf4e-d3ecba011782',
currency='RUB',
market_capitalization=6878249241240.0,
high_price_last_52_weeks=330.45,
low_price_last_52_weeks=219.2,
average_daily_volume_last_10_days=65639361.43,
average_daily_volume_last_4_weeks=60348494.76,
beta=0.8,
free_float=0.48,
forward_annual_dividend_yield=0.0,
shares_outstanding=21586948000.0,


( Читать дальше )

Тестирование торговой стратегии с использованием нового индикатора Джона Ф. Элерса на Python для дневных данных Московской биржи

Торговля акциями требует гибкости, особенно когда речь идет о тестировании стратегий технического анализа на прошлых данных. Я выбрал Python и библиотеки backtesting.py и aiomoex, потому что они позволяют анализировать рынок без сложных платформ и ограничений. Python дает свободу автоматизации, backtesting.py обеспечивает удобный и быстрый механизм тестирования стратегий, а aiomoex позволяет скачивать данные напрямую с Московской биржи без привязки к брокеру.

Важно, что backtesting.py получил обновление после четырех лет без обновлений, что делает его актуальным инструментом. И в отличие от MetaTrader, StockSharp, TSLab и Quik, которые работают с Московской биржей, но требуют Windows, если брокер имеет API, то можно запускать скрипт на любом сервере, включая облачные решения и Raspberry Pi.

В этой статье я протестирую самую свежую стратегию теханализа Джона Ф. Элерса (John Ehlers), направленную на устранение запаздывания скользящей средней. Разберемся, как её адаптировать к акциям Московской биржи и протестировать с помощью Python.

( Читать дальше )

Как автоматически отслеживать новости облигаций по своему портфелю?

Как частный инвестор, я всегда ищу способы упростить управление своим портфелем. Особенно меня интересуют высокодоходные облигации. Да, они немного «мусорные», но я не стремлюсь быть финансовым аналитиком в этом или детально изучать каждого эмитента.

Моя цель проста: купить бумаги и получать купоны, то есть стабильный доход. Однако, чтобы избежать неприятных сюрпризов, важно вовремя узнавать новости о компаниях-эмитентах.

Если бы у меня было всего 3–5 облигаций, я могу просто периодически пробивать названия эмитентов в поисковике и смотреть, что о них пишут. Но когда в портфеле 10 и более бумаг, такой подход превращается в рутину, на которую жалко тратить время. Автоматизация здесь может существенно упростить задачу.

Как автоматически отслеживать новости облигаций по своему портфелю?
Почему не использовать готовые решения?

Да, существуют профессиональные сервисы вроде Cbonds или Bloomberg Terminal, которые позволяют отслеживать новости по эмитентам.



( Читать дальше )

Почему облигации важны в инвестиционном портфеле?

В преддверии конференции ‭«Cbonds&Smart-Lab PRO облигации» я, Михаил Шардин и Екатерина Кутняк решили написать статью о том, почему облигации важны и как можно автоматизировать рутинные действия с ними.



( Читать дальше )

теги блога Михаил Шардин

....все тэги



UPDONW
Новый дизайн