На этой неделе больше всего исследований посвящено квантовым вычислениям и машинному обучению в трейдинге и управлении рисками. Ученые ищут способы улучшить торговые стратегии, оптимизировать портфели и точнее прогнозировать рынки.
1. Квантовые вычисления в финансах (q-fin.CP, q-fin.TR)
Исследуют, как квантовые алгоритмы могут повысить точность финансовых моделей. Например, в этой работе (http://arxiv.org/abs/2509.17715v1) показано, что квантовые компьютеры помогают лучше оценивать вероятность исполнения заявок в трейдинге облигациями. Метод дает прирост точности до 34%, несмотря на шум в квантовых вычислениях.
Другое исследование (http://arxiv.org/abs/2509.16955v1) тестирует квантовые алгоритмы для автоматических маркет-мейкеров в DeFi. Они помогают эффективнее перебалансировать портфели и дают лучшую доходность с учетом риска.
2. Машинное обучение в трейдинге (cs.LG, q-fin.PM, q-fin.TR)
Продолжают улучшать торговые стратегии с помощью нейросетей. В одной из работ (http://arxiv.org/abs/2509.16707v1) предложен фреймворк, который генерирует сигналы для 800+ акций США с низкими затратами и высокой эффективностью (хороший коэффициент Шарпа, слабая корреляция с рынком).
Каждую неделю мы просматриваем десятки-сотни новых научных работ по трейдингу и алгоритмам. Вот что выделилось на этой неделе.
1. Как предсказать волатильность крипты
Криптовалюты сильно прыгают в цене, поэтому их сложно прогнозировать. В статье Probabilistic Forecasting Cryptocurrencies Volatility: From Point to Quantile Forecasts предлагают новый метод – QRS. Он оценивает вероятности резких скачков на логарифмах данных. Простые линейные модели с ним работают лучше сложных.
Другое исследование – Sentiment-Aware Mean-Variance Portfolio Optimization for Cryptocurrencies – добавляет к анализу настроения из соцсетей и технические индикаторы. Стратегия дала +38,7% против +8,85% у Bitcoin, но и просадки у неё выше (-18,5%).
Вывод: крипту стоит анализировать не только по цифрам, но и по настроению рынка.
2. Нейросети для портфелей
LSTM-сети (особый тип нейросетей) хорошо предсказывают изменения в портфелях. В работе Investment Portfolio Optimization Based on Modern Portfolio Theory and Deep Learning Models их используют для расчёта корреляций активов. Результаты лучше, особенно на долгих периодах.