Представьте опытного трейдера: наверняка он не говорит котировками и не рассказывает про индикаторы — он просто говорит «сильный тренд», «пробой уровня» или «ложный отскок». Для него график это язык: свечи, объёмы и уровни складываются в понятные фразы о том, что сейчас происходит на рынке. Именно от этой человеческой интуиции я и отталкивался в своём эксперименте.
Идея была такая: а что, если научить искусственный интеллект понимать этот язык? Не подавать модели сырые числа, а переводить бары и объёмы в текстовые описания наблюдаемых паттернов и кормить ими языковую модель. Гипотеза была что в тексте уже будет содержатся достаточно данных, чтобы модель научилась связывать недавнюю торговую историю с тем, пойдёт ли цена вверх на следующий день.

Мои результаты, о них ниже
Инструмент эксперимента — модель distilbert‑base‑uncased с Hugging Face и это облегчённая, быстрая версия BERT для понимания языка.
Меня иногда упрекают, что я пишу не про трейдинг, а про какие‑то «технические игрушки». Но на самом деле все эти проекты — из одной экосистемы. Ведь алгоритмический трейдинг начинается не с покупки кнопки «BUY», а с умений собирать, очищать и анализировать данные.
Эта история как раз про это — про парсинг, обработку и анализ больших объёмов текстов локальной языковой моделью. Просто вместо новостей или отчётов компаний я анализировал комментарии к своим публикациям. Подход тот же самый, что и в работе с финансовыми новостями: собираем данные, структурируем, прогоняем через модель, выделяем позитив и негатив. В трейдинге это может стать элементом новостного сканера или инструмента для оценки тональности рынка. А в моём случае — это просто удобный способ собрать добрые слова, за которые я всем благодарен.