Блог им. DenisVo |А че, так можно было что-ли!?

Буквально вчера праздно копался в интернете и случайно обнаружил довльно интересный подход к оптимизации портфеля. Люди взяли простейшую нейронную сеть

А че, так можно было что-ли!?
На вход подается исторические данные по закрытию и доходность. На выходе получают значение весов каждой бумаги в портфеле. После чего считают шарп как функцию ошибки. Т.е. они ничего не предстказывают, а просто находят наилучшее решение для текущих данных.

Работает это все только в лонг, и как утверждают авторы лучше чем марковец. Сам подход использования сетей показался интересным. :)
Что думаете, имеет право на жизнь?

Cсылка на источник:
paperswithcode.com/paper/deep-learning-for-portfolio-optimisation



Блог им. DenisVo |Одна из многих причин, почему нейронные сети не способны предсказывать рыночную цену.

Буквально на днях, в комментариях я выразил обеспокойство тем, что если брать ценовой ряд как фичу, то нужно наши входные данные (ценовой ряд) привести к одному виду, а это на мой взгляд довольно сложно. Простой пример это волатильность, если она изменяется, то наша сеть начнет выдавать больше ошибок. 
Эти размышления, заставили меня вернуться к основам, и посмотреть сможет ли сеть выучить простейшие математические функции. Конечно, с линейной функцией проблем не возникло, а вот с нелинейными как и ожидалось мы получили массу проблем. Так как сети неплохо работают внутри того диапазона на котором они обучались, и с грохотом проваливаются вне этого диапазона. 

Вот простой пример предсказания функции синуса. y = sin(x)

Одна из многих причин, почему нейронные сети не способны предсказывать рыночную цену.
Синим показаны наши истинные значения, оранжевым то, что простейшая модель предсказывает. Красный квадрат отображает диапазон видимый при обучении. 

На самом деле, мне кажется это довольно большая проблема в целом. 

( Читать дальше )

....все тэги
UPDONW
Новый дизайн