Итак, в ходе моего эксперемента, как это часто бывает, я отошел немного в сторону и погрузился в рассмотрение работы TFX pipeline. Что на самом деле довольно не плохо, так как теперь понимаю как он работает.
Однако TFX, как и большинство опен сорс софта, имеет свои проблемы:
- Как я писал в предыдущем посте, компоненты работают в основном только с тренировочным и оценочным (train, eval) наборами данных
- Версия TFX 0.15 работает только с estimator API — однако говорят что в версии 0.21 ввели поддержку keras моделей без конвертирования ее в estimator, к сожалению не удалось это опробовать, так как в этой версии они сломали interactive context. Конечно, можно было бы и без него, просто все компоненты загнать в пайплайн, но хотелось, что бы и в ноутбуке все работало.
- При использовании keras моделей, так и не разобрался как заставить работать TFMA в полную силу, а штука выглядит забавной. Если кто то в курсе, буду рад совету %).
В общем и целом можно смело использовать все эти технологии, но лучше без интерактивных компонентов. Загоняем все в apache beam и строим модельки, проверяем, лучшие используем :). Думаю простейший метод это простой конвейер с функцией трансформации данных и самой моделью. Остальное можно и проигнорировать для домашнего пользования.
(
Читать дальше )