3Qu, нивапрос…
Давай ему (ML) реальный рыночный сэмпл скормим? )))
Если не подавится — бабла поднимем по самое не балуйся )))
Практически гарантирую )))
С уважениемМальчик buybuy
Мальчик buybuy,Запасы данных у меня почти бесконечныеМне непонятна.)
Постановка задачи тоже понятна
Подготовь данные для обучения, скажи каким ML обучать. Так и быть, накормлю твоими данными.
Только расскажи чему и на чем учим. Верняк скажу, что в такой постановке не прокатит и данные не подходят.) Поди туда не знаю куда, принеси то, не знаю что, или дай бабла не прокатит.
Сижу как-то раз за рюмкой чая (это было за год, два или три до моего прихода на Smart-Lab} и приходит мне в голову мысль — а почему бы не попробовать прогнозировать котировки.
Прогноз, естественно, на ТФ 1м, который я использую. Время прогноза пусть будет — 5 минут — вполне достаточное для моих сделок, а недостаточно, так прогноз можно и повторить на следующие 5 минут. Архивы котировок по фьючерсам SBRF и GAZR тоже имеются, минимум за год-два за последние 3 месяца перед экспирацией — хватит и на отладку и на проверку.
Все есть, только как реализовать прогнозирование? — ни одной мысли.
Собственно, не особо мне это было и нужно, рабочая система у меня уже была и меня она вполне устраивала, но мысль о прогнозировании засела, и я время от времени ее думал.
Ничего сколь-нибудь конструктивного в голову не приходило, и было решено для прогнозирования использовать нейросеть, тем более, незадолго до того я немного занимался машинным обучением и нейросетями в том числе.
От использования каких-либо предикторов сразу отказался. Плюс 2-3 слоя к нейросети, и если в данных есть какие-либо взаимосвязи, НС сама внутри себя построит нужные ей предикторы. В общем, подаем на НС поток цен 15-20 отсчетов Vc={C(t0-20),C(t0-19),...C(t0)}, нормируем их к динам диапазону НС — Vcn={c(t0-20),c(t0-19,… c(t0-1), 0} — c(t0) у нас всегда = 0, и пусть НС сама мучается с прогнозированием и поиском c(t0+5). И еще, у всякого метода есть область применимости, потому нельзя учить чему попало. Для этого из обучающей и проверочных последовательностей по возможности исключаем области истории, где прогнозирование невозможно. Иначе получим нечто такое.