Блог им. Replikant_mih |Что я понял, обучая модели.

Вернее так: что я увидел, обучая модели. Всякие подобные темы любят поднимать трейдеры, они отлично располагают для пространных рассуждений о рынке и жизни, а я это, можно сказать, увидел наглядно. В общем, наблюдения не что-то гениальное, мной открытое, не грааль, но я это наблюдаю.

 

Что я делаю:

Играюсь с моделями ML, играюсь гипер-параметрами – параметрами самих моделей непосредственно и моими какими-то входящими параметрами. Смотрю как меняются результаты в зависимости от этих параметров.

 

Что я увидел:

  1. Где-то закономерностей объективно больше, где-то объективно меньше. Если прочесываешь график моделями (с разными параметрами) по мат. ожиданию OOS результатов совокупности моделей и по их распределению видно, что из каких-то графиков закономерности извлекаются на ура, а из каких-то со скрипом. В данном случае график это пересечение по тикер-TF-временной отрезок. Да даже если брать только тикер, некоторые, что называется, палку воткни, она зацветёт, а в некоторых надо очень постараться, чтобы нащупать нормальные закономерности.
  2. Похоже, действительно легче прогнозировать на короткие интервалы. Но эта закономерность выглядит не так, как её обычно преподносят. Обычно в ходу какая-то такая версия: чем ближе, тем легче, типа на минуты легче, чем на часы и т.д. Я бы сказал, что подтверждение находит скорее следующее: чем больше отношение горизонта прогноза к длине промежутка времени, данные из которого непосредственно участвуют в прогнозе. Ну т.е. если ты принимаешь решение по 50 свечам, то на 2*50 можно прогнозировать с большей точностью (winrate), чем на 10*50 и т.д. При этом в другом контексте, например, если ты ушел на TF выше, ты эти 10*50 сможешь спрогнозировать уже с хорошей точностью.
  3. Объективно раньше было зарабатывать легче. По ошибке из большого промежутка времени сначала какое-то время брал для обучения данные не самые свежие, а самые древние и удивлялся очень приличным результатам моделей, на свежих данных моделям можно сказать драматически сложнее извлекать закономерности.

Блог им. Replikant_mih |Записался на обучение по Data Science.

Обычно человек ходит по колее, но иногда система сбоит и случаются «эмм, а чё я раньше не задумывался, что можно…» и «хм, а ведь можно попробовать сделать…». В такие моменты можно выскакивать за пределы колеи и переходить в новую более интересную, выходить из зоны болотного комфорта в зону воодушевляющего дискомфорта.


Всегда ходил по колее (вернее, замкнутому циклу): математика не моё, у меня много своих преимуществ, математик не в их числе, не всем дано. И к нему прицеплялось: машинное обучение, нейронные сети, статистика и тер.вер. требуют математики – ну, значит, тоже не мое, ну значит без этого. А тут че-то осенило: а какого хрена!? Кстати, тот случай когда реклама сподвигла (назойливая реклама курсов обучения по Data Science). Сначала отмахивался, а в какой-то момент подумал: а почему бы и нет? – Да, страшно, да лень, да не уверен, что получится, да долго, да нет уверенности, что поможет и т.д. Хорошо подумал, уверенным движением руки смахнул все эти иррациональные возражения и страхи со стола и записался на курс.

Так что скоро, надеюсь, например, не буду просто пролистывать посты уважаемого А.Г., а, возможно, буду извлекать смысл.

Кстати, уже только при прочтении программы курса словил пару инсайтов применительно к фин. рынкам.

Глаза загорелись. Будет интересно.


....все тэги
2010-2020
UPDONW