Блог им. DenisVo |Оптимизация Алгоритмических Стратегий: Deflated Sharpe Ratio

Всем доброго дня! 

Продолжаем рассматривать различные метрики помогающие в оптисизации и выборе алгоритмических торговых стратегий.
Сегодня у нас Deflated Sharpe Ratio

📈 Понимание этого коэфициета становится неотъемлемым элементом при разработке и использовании автоматических торговых стратегий. Этот уникальный инструмент может быть ключом к оптимизации алгоритмов и моделей!

Наше последнее видео посвящено Deflated Sharpe Ratio и его преимуществам:

1️⃣ Реалистичная оценка производительности: Deflated Sharpe Ration корректирует оригинальный коэффициент Шарпа, учитывая количество проведенных испытаний, предлагая более реалистичную оценку производительности стратегии.

2️⃣ Защита от переобучения: Учитывая множественное тестирование, он помогает инвесторам избежать подводных камней переобучения и добычи данных, которые часто упускаются из виду в традиционных мерах.

3️⃣ Улучшенная оценка риска: Учитывая асимметрию и эксцесс ваших стратегических доходов, он предлагает более полную оценку риска.



( Читать дальше )

Блог им. DenisVo |Чем плох Sharpe и когда стоит использовать что-то другое ( AI Inside! )

Решил я чуть сменить формат видео на ютубе :)… теперь там у меня AI тетка :)

Тема видио в целом простецкая… когда лучше не использовать шарп, а когда что другое…



но куда интереснее, что видео на 95% сделано с помощью современных AI технологий… Просто полюбуйтесь как красиво она говорит… %)



Блог им. DenisVo |Битва методов оптимизации портфеля!

Всем привет, 

Не смотря на то, что многие люди довольно скептически отнеслись к китайской идее напрямую оптимизировать значение шарпа и подберать веса для активов используя LSTM сеть (А что так можно было?), я решил все же этот метод протестировать. 

Я не люблю всякого рода сложные подходы, поэтому я пошел в лоб, написал простую стратегию для динамической ребалансировки портфеля (только лонг) и протестировал на ней различные методы.

Для тестов были взяты следующие методы оптимизации финасового портфеля:

Классические:
  • Mean-Variance
  • Hierarchical Risk Parity (созданный Маркусом Лопезом де Прадо)
  • Critical Line Algorithm (говаривают метод специально для оптимизации портфелей придуман)
  • Efficient Frontier with nonconvex optimizer (нашел в примерах питоновского пакета, добавил для кучи)
Экзотические:
  • LSTM (модель предложенная китайцами, из предыдущего поста)
  • Trained LSTM (обученная модель на истории, предсказывает распределение на следующие 22 дня)


( Читать дальше )

Блог им. DenisVo |А че, так можно было что-ли!?

Буквально вчера праздно копался в интернете и случайно обнаружил довльно интересный подход к оптимизации портфеля. Люди взяли простейшую нейронную сеть

А че, так можно было что-ли!?
На вход подается исторические данные по закрытию и доходность. На выходе получают значение весов каждой бумаги в портфеле. После чего считают шарп как функцию ошибки. Т.е. они ничего не предстказывают, а просто находят наилучшее решение для текущих данных.

Работает это все только в лонг, и как утверждают авторы лучше чем марковец. Сам подход использования сетей показался интересным. :)
Что думаете, имеет право на жизнь?

Cсылка на источник:
paperswithcode.com/paper/deep-learning-for-portfolio-optimisation



....все тэги
UPDONW
Новый дизайн