Блог им. Zmey56 |Оптимизации портфеля с помощью Python и PyPortfolioOpt

Портфельная теория Марковица

Портфельная теория Марковица(далее ПТМ) (Modern portfolio theory) — разработанная Гарри Марковицем методика формирования инвестиционного портфеля, направленная на оптимальный выбор активов, исходя из требуемого соотношения доходность/риск. Сформулированные им в 1950-х годах идеи составляют основу современной портфельной теории.

Основные положения портфельной теории были сформулированы Гарри Марковицем при подготовке им докторской диссертации в 1950—1951 годах.

Рождением же портфельной теории Марковица считается опубликованная в «Финансовом журнале» в 1952 году статья «Выбор портфеля». В ней он впервые предложил математическую модель формирования оптимального портфеля и привёл методы построения портфелей при определённых условиях. Основная заслуга Марковица состояла в предложении вероятностной формализации понятий «доходность» и «риск», что позволило перевести задачу выбора оптимального портфеля на формальный математический язык. Надо отметить, что в годы создания теории Марковиц работал в RAND Corp., вместе с одним из основателей линейной и нелинейной оптимизации — Джорджем Данцигом и сам участвовал в решении указанных задач. Поэтому собственная теория, после необходимой формализации, хорошо ложилась в указанное русло.



( Читать дальше )

Блог им. Zmey56 |Использование API Fmp Cloud для отбора акций по дивидендам на Nasdaq с помощью Python

    • 21 марта 2021, 20:02
    • |
    • Zmey56
  • Еще

Акции с высокой дивидендной доходностью часто являются отличной инвестиционной стратегией для инвесторов, стремящихся получать приток денежных средств каждый год. В данной статье буден создан скрипт на Python для отбора их на бирже NASDAQ.

Что такое дивидендная доходность?

Возьму определение из Википедии. Дивиде́ндная дохо́дность (англ. dividend yield) — это отношение величины годового дивиденда на акцию к цене акции. Данная величина выражается чаще всего в процентах.

Пример

При цене акции ОАО «Лукойл» 1124,37 рублей и дивиденде 28 рублей на акцию дивидендная доходность будет равна:

Использование API Fmp Cloud для отбора акций по дивидендам на Nasdaq с помощью Python
Так же необходимо обратить внимание, что многие растущие компании, такие как для примера Amazon и Yandex, не выплачивают дивиденды, поскольку они реинвестируют всю прибыль в развитие бизнеса. Поэтому дивидендная доходность для этих фирм будет равна нулю.

Расчет дивидендной доходности с помощью Python



( Читать дальше )

Блог им. Zmey56 |Использование метода Монте-Карло для создания портфеля

    • 26 апреля 2020, 14:17
    • |
    • Zmey56
  • Еще

Начинающие (да и не только) инвесторы часто задаются вопросом о том, как отобрать для себя идеальное соотношение активов входящих в портфель. Часто (или не очень, но знаю про двух точно) у некоторых брокеров эту функцию выполняет торговый робот. Но заложенные в них алгоритмы не раскрываются.

В этом посте будет рассмотрено то, как оптимизировать портфель при помощи Python и симуляции Монте Карло. Под оптимизацией портфеля понимается такое соотношение весов, которое будет удовлетворять одному из условий:

  • Портфель с минимальным уровнем риском при желаемой доходности;
  • Портфель с максимальной доходностью при установленном риске;
  • Портфель с максимальным значением доходности

Для расчета возьмем девять акций, которые рекомендовал торговый робот одного из брокеров на начало января 2020 года и так же он устанавливал по ним оптимальные веса в портфеле: 'ATVI','BA','CNP','CMA', 'STZ','GPN','MPC','NEM' и 'PKI'. Для анализа будет взяты данные по акциям за последние три года.

#Загружаем библиотеки

import pandas as pd
import yfinance as yf
import numpy as np
import matplotlib.pyplot as plt

# Получаем данные по акциям
ticker = ['ATVI','BA','CNP','CMA', 'STZ','GPN','MPC','NEM', 'PKI']

stock = yf.download(ticker,'2017-01-01', '2019-01-31')


( Читать дальше )

Блог им. Zmey56 |Общий финансовый анализ на Python (Часть 3)

    • 05 апреля 2020, 12:51
    • |
    • Zmey56
  • Еще

После всех вычислений, приведенных в этой и этой публикациях, можно углубиться в статистический анализ и рассмотреть метод наименьших квадратов. Для этой цели используется библиотека statsmodels, которая позволяет пользователям исследовать данные, оценивать статистические модели и выполнять статистические тесты. За основу были взяты эта статья и эта статья. Само описание используемой функции на английском доступно по следующей ссылке.

Сначала немного теории:

О линейной регрессии

Линейная регрессия используется в качестве прогнозирующей модели, когда предполагается линейная зависимость между зависимой переменной (переменная, которую мы пытаемся предсказать) и независимой переменной (переменная и/или переменные, используемые для предсказания).



( Читать дальше )

Блог им. Zmey56 |Общий финансовый анализ на Python (Часть 2)

    • 22 марта 2020, 13:48
    • |
    • Zmey56
  • Еще
Ну что продолжим?

Скользящее окно(Moving Windows)

В заголовке я привел дословный перевод. Если кто меня поправит, и другой термин применяется — то спасибо.

Смысл скользящего окна– с каждым новым значением функция пересчитывается за заданный период времени. Этих функций большое количество. Для примера: rolling.mean(), rolling.std(), которые чаще всего и используют при анализе движения акций. rolling.mean() — это обычная скользящая средняя, которая сглаживает краткосрочные колебания и позволяет визуализировать общую тенденцию.

# Выделяю скорректированную цену закрытия 
adj_close_px = sber['Adj Close']

# Вычисляю скользящую среднию
moving_avg = adj_close_px.rolling(window=40).mean()

# Вывожу результат
print(moving_avg[-10:])
Общий финансовый анализ на Python (Часть 2)
Дальше построим график, чтоб лучше понять то, что получается в результате работы данной функции:
# Вычисление короткой скользящей средней
sber['40'] = adj_close_px.rolling(window=40).mean()

# Вычисление длинной скользящей средней
sber['252'] = adj_close_px.rolling(window=252).mean()

# Построение полученных значений
sber[['Adj Close', '40', '252']].plot(figsize=(20,20))

plt.show()


( Читать дальше )

....все тэги
UPDONW