Продолжение. Предыдущая серия:
Мои итоги 2017
Долго слоупочил, но наконец-то хватило терпения подвести результаты за прошедший год. Если коротко — год по понятным причинам был сложный, в убытках оказалась рекордная доля активов за несколько десятилетий, а поскольку системы у меня только инвестиционные (все-таки, основной доход у меня от работы, и это наверное долго, а может и всегда будет так, а торговля — 2 часа в месяц баловства для) — то они не могут зарабатывать когда все сливает.
Начнем с хорошего — т.е. российского рынка. Тут результаты в принципе неплохие и почти догнали ожидания за год:
Ретурн +19.1% годовых c максимальной просадкой 7.5% и Шарпом 1.6. Последние 3 месяца года, конечно, подкачали, и весна прошла во флэте, но по итогу результат достойный и обгоняет индекс ММВБ (индекс ММВБ полной доходности «нетто»: ретурн 18.2% годовых с максимальной просадкой 11.1%) — немного по доходности и существенно — по максимальной просадке (спасибо А.Г. за данные по полной доходности)
Результаты консервативной количественной инвестиционной модели LQI (lazy quantitative investing), о которой я писал ранее (https://smart-lab.ru/blog/384110.php), за декабрь (результаты за прошлый месяц: smart-lab.ru/blog/508343.php). Модель третий месяц подряд обгоняет SPY, но учитывая динамику индекса за последний месяц это не очень-то вселяет оптимизм. Вот веса предыдущего месяца и соответствующие ретурны торгуемых тикеров:
weight monthly.ret
XLY 0.048 -7.95
XLP 0.221 -8.91
XLE 0.000 -12.43
XLF 0.000 -11.12
XLV 0.000 -9.35
XLI 0.196 -10.65
XLB 0.000 -6.88
XLK 0.000 -8.36
XLU 0.210 -3.99
IYZ 0.214 -8.22
VNQ 0.112 -7.96
SHY 0.000 0.76
TLT 0.000 5.85
GLD 0.000 4.92
В среднем перформанс выбранных секторов оказался чуть лучше, чем у SPY, за счет этого удалось примерно на 1% обогнать индекс, однако из-за отсутствия в портфеле из-за предыдущего несходящего тренда защитных активов — золота и трежерей — модель проиграла EQW (equal-weighted портфель торгуемых тикеров): (-8.8%) SPY vs (-7.8%) LQI vs. (-6.0%) EQW. В терминах максимальной просадки в течение месяца модель также обогнала SPY и оказалась хуже EQW: 12.6% LQI vs. 15.4% SPY vs. 11.1% EQW. Что немного радует: в течение месяца я активно управлял реальным счетом (сливая портфель по ходу углубления просадки), так что результат получился чуть лучше — наверное, где-то на уровне EQW, однако этот результат все равно удручающий.
Тут все ударились в подведение итогов года, однако для меня год еще не закрыт — завтра сессия на NYSE, поэтому итоги 2018 года я традиционно подведу в начале следующего, а в этом посте продолжаю публикацию своих ежемесячных результатов и портфелей на следующий месяц по стратегии на России (начало здесь: smart-lab.ru/blog/412664.php, результаты ноября: smart-lab.ru/blog/508330.php).
Вот как бы вел себя портфель, рекомендованный на декабрь:
Результаты консервативной количественной инвестиционной модели LQI (lazy quantitative investing), о которой я писал ранее (https://smart-lab.ru/blog/384110.php), за ноябрь (результаты за прошлый месяц: smart-lab.ru/blog/502576.php). Модель зашла в белую полосу аутперформанса и второй месяц подряд существенно обгоняет SPY. Вот веса предыдущего месяца и соответствующие ретурны торгуемых тикеров:
weight monthly.ret
XLY 0.206 2.48
XLP 0.213 2.27
XLE 0.000 -1.56
XLF 0.104 2.63
XLV 0.174 8.08
XLI 0.000 3.81
XLB 0.000 3.80
XLK 0.025 -1.96
XLU 0.278 3.54
IYZ 0.000 1.81
VNQ 0.000 4.67
SHY 0.000 0.38
TLT 0.000 1.79
GLD 0.000 0.34
За счет того, что модель сидела в наиболее выросших секторах и не сидела в сливших — удалось обогнать и SPY и EQW (equal-weighted портфель торгуемых тикеров): +1.85% SPY vs +3.61% LQI vs. 2.3% EQW. В терминах максимальной просадки в течение месяца модель также обогнала SPY и оказалась на уровне с EQW: 4.1% LQI vs. 6.2% SPY vs. 3.9% EQW.
Вот позиции модели на начало декабря (доли в итоговом портфеле). Если решите их торговать — лучше заходить в ближайшие 1-5 дней с даты публикации:
weight
XLY 0.048
XLP 0.221
XLE 0.000
XLF 0.000
XLV 0.000
XLI 0.196
XLB 0.000
XLK 0.000
XLU 0.210
IYZ 0.214
VNQ 0.112
SHY 0.000
TLT 0.000
GLD 0.000
Продолжаю публикацию своих ежемесячных результатов и портфелей на следующий месяц (начало здесь: smart-lab.ru/blog/412664.php, результаты октября: smart-lab.ru/blog/502573.php).
Вот как вел бы себя портфель, рекомендованный на ноябрь:
Результаты консервативной количественной инвестиционной модели LQI (lazy quantitative investing), о которой я писал ранее (https://smart-lab.ru/blog/384110.php), за октябрь (результаты за прошлый месяц: smart-lab.ru/blog/497297.php). Думаю, рассказывать о прошедшем месяце много не надо, и для модели он также выдался ужасным, однако за счет более грамотной аллокации в защитные активы и ухода из самых кислотных — модель наконец-то аутперформила SPY, причем довольно существенно. Вот веса предыдущего месяца и соответствующие ретурны торгуемых тикеров:
weight monthly.ret
XLY 0.161 -10.10
XLP 0.181 2.02
XLE 0.144 -11.37
XLF 0.122 -4.75
XLV 0.171 -6.78
XLI 0.000 -10.87
XLB 0.000 -9.18
XLK 0.000 -8.00
XLU 0.078 1.98
IYZ 0.062 -5.18
VNQ 0.081 -2.93
SHY 0.000 0.15
TLT 0.000 -2.93
GLD 0.000 2.12
За сачет того, что модель не залезла в часть особенно сливших секторов (XLI, XLB, XLK) — удалось обогнать SPY: (-6.9)% SPY vs (-5.0)% LQI vs. (-4.7)% EQW. В терминах максимальной просадки в течение месяца модель также обогнала SPY и оказалась чуть хуже EQW: 6.9% LQI vs. 9.7% SPY vs. 6.3% EQW.
Продолжаю публикацию своих ежемесячных результатов и портфелей на следующий месяц (начало здесь: smart-lab.ru/blog/412664.php, результаты сентября: smart-lab.ru/blog/496726.php).
Вот как вел бы себя портфель, рекомендованный на октябрь: