Очередная интересная задачка по терверу
Спецом для трейдеров. Не столько сложная, сколько интересная:
Вы можете бросить кубик до трех раз. После каждого бросания или забираете столько долларов сколько выпало на кубике либо играете дальше.
К примеру: кинули 2 раза, на второй раз выпало 5 и вы решаете остановиться, забираете себе 5$.
Определить оптимальную стратегию игры и ожидаемый выигрыш?
8.5К |
Читайте на SMART-LAB:
EUR/USD: Праздники окончены — быки выходят на охоту?
В первый торговый день недели пара EUR/USD устроила эффектную проверку на прочность. Котировки протестировали точку пересечения линии восходящего...
Итоги первичных размещений ВДО и некоторых розничных выпусков на 5 января 2026 г.
Следите за нашими новостями в удобном формате: Telegram , Youtube , Смартлаб , Вконтакте , Сайт
Прогнозы на 2026 год от аналитиков «Финама»: акции
Эксперты «Финама» поделились своими прогнозами на 2026 год и назвали самые перспективные идеи на рынке России, США и Китая....
На последнем шаге приходится брать то, что выпало. Математическое ожидание последнего шага равно
(1 +… + 6) / 6 = 3.5.
На предпоследнем шаге, если выпало 4, 5 или 6, уже не стОит отвергать результат и пытаться ещё раз на последнем шаге. А если выпало 1, 2 или 3, то имеет, т.к. математическое ожидание последнего шага 3.5 больше, чем то, что выпало. Математическое ожидание предпоследнего шага равно
3/6 * 3.5 + 1/6 * (4 + 5 + 6) = 4.25.
На предпредпоследнем шаге (он первый в этой задаче), если выпало 1, 2, 3 или 4, то стоит поиграть по оптимальной стратегии на последующих шагах, где математическое ожидание равно 4.25, а если выпало 5 или 6, то лучше остановиться. Математическое ожидание этого шага равно:
4/6 * 4.25 + 1/6 * (5 + 6) = 28/6 = 4.666..
В итоге, оптимальная стратегия выглядит так:
* бросить кубик 1-й раз; если выпало 5 или 6, то остановиться;
* бросить кубик 2-й раз; если выпало 4, 5 или 6, то остановиться;
* бросить кубик 3-й раз и взять, что выпало.
Кстати, эта задачка имеет некоторое отношение к опционам (похожая логика используется при расчёте справедливых цен методом деревьев).
спасибо
_sk_, Спасибо за подробное рассуждение. Такая логика пахнет тач-опционом...
К сожалению, почти все вероятностные задачки на различные виды лотерей не учитывают цену билетика. Точнее, принимают ее равной нулю. Это иногда приводит к неприятным и парадоксальным ответам.
Можно ли обобщить задачу на случай непрерывного времени и сказать, что имеется граница оптимальной остановки по достижению которой нужно фиксировать профит и уходить?
Я консервативный игрок. Если при первом броске выпало больше 3, то забрать выигрыш. Если выпало 1, 2, 3, то бросать ещё раз.
Если при втором броске выпало больше 3, то забрать выигрыш.
Если выпало 1, 2, 3, то бросать третий раз.
Ну, если все три раза выпадают цифры 1,2 и 3, то значит не повезло.
К инвесторам это не относится. Они ждут до победного момента. Пока акция не достигнет целевой цены.
Понять как считать сначала на самом деле проще, тогда не нужно знать что такое матожидание (ну почти).
Сколько бы у вас не выпало на первом броске, у вас будет ещё 2 шанса выбросить больше того что у вас выпало.
Вероятность выбросить больше скажем 5ти за два броска равна:
1/6 (выпала 6ка и вы закончили) + (5/6) (выпало 5 или меньше) и снова хотим 6ку, шанс 1/6 итого вероятность выбросить больше 5ти:
1/6+5/6*1/6 = 30%, играть не стоит,
В случае 4ки:
2/6+4/6*2/6 = 55.6% вот здесь уже можно поиграть
Пусть кубик нелинейный: 1, 2, 3, 4, 8, 9
Имеем на руках 4, стоит ли кинуть еще раз? По вашему методу вероятность улучшить результат <50%, значит нет.
Но матожидание 4.5 говорит другое. Так что без него никуда.