Всего лишь неделю нужно для того, чтобы каждый из вас смог сам научиться программировать сверточные нейронные сети, которые торгуют не хуже этой*:
Основное отличие машинного обучения от традиционного программирования состоит в том, что в задачах классического программирования вы знаете некие правила и жестко программируете их в поведении программы; в задачах машинного обучения вы не знаете по каким конкретно правилам должна работать программа и позволяете моделям машинного обучения самим найти их. Если вы хотите создать торгового робота, обычно, вы сами ищете некоторые правила (например, пересечение скользяшек, MACD>80 при убывающей луне — покупаю 2 лота) и жестко задаете такое поведения в роботе, тестируете и, возможно, оптимизируете некоторые параметры, но почему бы не поручить само придумывание правил машине? Методы машинного обучения, в теории, могут сами выбрать индикаторы, разработать правила входа, выхода и оптимальный размер позиций. Да чего уж… они могут сами придумать индикаторы, паттерны, которые могут быть гораздо лучше чем то, что придумали до этого люди. Ведь так и случилось в сфере обработки изображений, нейронные сети научились выделять значимые признаки из изображений гораздо лучше, чем алгоритмы, придуманные людьми. Компьютер обыгрывает людей в шахматы — игру, знания для которой люди накапливали ни одну сотню лет. Станет ли алготрейдинг следующей сферой, где будет господствовать нейронные сети или какой другой метод машинного обучения?