Блог им. Ollivander

Научные тренды в алготрейдинге: обзор за неделю

Каждую неделю мы отбираем и разбираем десятки свежих препринтов научных работ по алгоритмической торговле. Вот что сейчас в фокусе исследований.

Генеративные модели для рыночных данных

Ученые активно работают над моделями, которые имитируют рыночные данные. Это нужно для стресс-тестирования и торговли в условиях неопределенности.

В работе «Nested Optimal Transport Distances» предлагают новый метод оценки таких моделей. Он помогает точнее предсказывать поведение рынка, что важно для хеджирования и алгоритмов на основе обучения с подкреплением.

Другое исследование «Painting the market: generative diffusion models for financial limit order book simulation and forecasting» использует диффузионные модели — технологию, похожую на ту, что создает изображения в нейросетях. Здесь ее применили к данным стакана заявок, чтобы лучше предсказывать его изменения.

Микроструктура рынка и влияние ордеров

Как отдельные заявки меняют цену? В статье «The Subtle Interplay between Square-root Impact, Order Imbalance & Volatility II: An Artificial Market Generator» показано, что волатильность можно объяснить через влияние крупных ордеров. Их эффект на цену часто подчиняется закону квадратного корня.

Для DeFi тоже есть важные исследования. В «Dynamics of Liquidity Surfaces in Uniswap v3» разбирают, как меняется ликвидность в Uniswap. Это помогает оптимизировать работу алгоритмов на децентрализованных биржах.

Машинное обучение для прогнозирования

Подходы ML все чаще используют для поиска рыночных минимумов и аномалий. В «Predicting Market Troughs: A Machine Learning Approach with Causal Interpretation» показали, что волатильность опционов и ликвидность — ключевые факторы для предсказания дна рынка.

В криптотрейдинге важно увидеть нечестную игру. Система из статьи «HyPV-LEAD: Proactive Early-Warning of Cryptocurrency Anomalies through Data-Driven Structural-Temporal Modeling» лучше других обнаруживает схемы вроде pump-and-dump.

Что дальше?

Ожидается рост исследований по диффузионным моделям и причинно-следственному анализу в ML. Это не только улучшит прогнозирование, но и поможет объяснять рыночные события.

В ценообразовании опционов тоже будут прорывы. Работа «Deep Learning Option Pricing with Market Implied Volatility Surfaces» — пример того, как нейросети могут упростить оценку сложных инструментов.

Пишу про автоматизацию трейдинга и не только. Канал

398

Читайте на SMART-LAB:
Теряет ли черное золото свой блеск? Акции на 2026!
Нефтяной рынок снова лихорадит. Геополитика формирует новый баланс сил, в котором российские компании могут получить и краткосрочный плюс, и...
Фото
«Цифра брокер»: справедливая цена акций MGKL — 4 руб.
Инвестиционная компания Цифра брокер повысила оценку справедливой стоимости акций ПАО «МГКЛ» с 3,44 руб. до 4,00 руб. за акцию. Пересмотр...
AI в трейдинге: как финансовая индустрия работает с ML и AI-моделями
Чтобы свести человеческий фактор к минимуму, трейдеры используют алгоритмы для автоматизации. Но ведь можно делегировать не только сделки, но и...
Фото
Стратегия 2026 по рынку акций от Mozgovik Research: трудный год, но, возможно, последний год низких цен
Сегодня у меня первый день официального отпуска. За окном темная звездная ночь, яркая белая луна, +24С и шум волн Андаманского моря. Неудачный...

теги блога Ollivander

....все тэги



UPDONW
Новый дизайн