Блог им. Citizen

Популярные парадоксы теории вероятностей (Монти Холла и задача о 2 конвертах)

Недавно на смартлабике внось всплыла тема парадокса Монти-Холла. В свое время я узнал о ней благодаря ЖЖ Феникса, и мне она так понравилась, что я решил ее в общем виде. Вот один частный случай, который, возможно, взворвет мозг гуманитариям:

Есть 7 дверей, за одним из которых находится автомобиль, а за 6 остальными — козы. В поисках автомобиля игрок может выбрать любые две двери, но пока не открывать их.
После выбора игрока ведущий открывает 3 из оставшихся 5 дверей, где находятся козы.
Далее игроку предлагается возможность поменять решение: вместо _двух_ дверей, которые он выбрал изначально, он может поискать автомобиль за _одной_ из других 5 дверей, из которых 3 открыты ведущим (т.е., по сути, за 1 из двух закрытых)

как выгоднее поступить игроку?


И к задаче о двух конвертах. Существует распространенное заблуждение, что обоим игрокам выгодно поменять конверты. Это неверно. Парадокс здесь на самом деле кроется в некорректном условии задачи. А именно: если считать по умолчанию распределение денег в конвертах равномерным от нуля до бесконечности, то для такого распределения не выполняется условие нормировки вероятности (мощность множества всех исходов не равна 1, а равна бесконечности). Если же взять, например, конечное равномерное распределение, или бесконечное экспоненциально убывающее распределение, то можно формально вычислить величину суммы в конверте, выше которой обмен становится невыгодным (ниже нее, соотвественно, выгодным).
148 | ★3
17 комментариев
Кстати очень даже вяжется с этим эффектом фраза «ты сначала подумай, а потом говори глупость» (фраза кстати употребляется ПОСЛЕ того как была сказана только что глупость). То есть первое что приходит в голову часто бывает глупостью :) то бишь первый выбор может оказаться глупость хотя бы из этих соображений ;)
Дмитрий Интрадей, частенько мне первая мысль в голову приходит — закрывай сделку, быстрее закрывай пока цена хорошая, но я отмахиваюсь от этой мысли, и сразу же, как правило, цена уходит далеко против меня )) а я уже начинаю беседу с лосем ))
avatar
Olegg, В этих случаях, как я заметил, дело не в статистике, а в психологии. Ты просто не фиксируешь моменты обратного поведения цены.
Т.е., эмоции от негатива гораздо сильнее эмоций от позитива, и ты помнишь негативные моменты, но забываешь про удачные.
avatar
moscow, именно память что отфиксил позу дешевле чем мог чуть позже запоминается больше лося.
avatar
откуда взялись 2 игрока???
при большем количестве экспериментов замена дверей ведет к выигрышу. чем больше выборка тем верней путь.
avatar
gillwing, поясните вопрос
avatar
Citizen,
И к задаче о двух конвертах. Существует распространенное заблуждение, что обоим игрокам выгодно поменять конверты.
откуда взялись 2 игрока??? разве их должно быть два
avatar
gillwing, есть вариант задачи, когда игроков двое, но сути это не меняет
avatar
отличные задачки, всем рекомендую разобраться :)
avatar
Johnny_22, так вы готовы представить решение приведенного мной варианта парадокса Монти-Холла?)
avatar
Citizen, ответ ниже )
avatar
ну как мне видится, изначально игрок имеет вероятность в 2/7, выбирая две двери и не имея никакой информации.
ПОсле того как ведущий открыл 2 двери с козами, если игрок поменяет 2 выбранных двери на одну, будем иметь следующую ситуацию:
вероятность что за каждой из изначалььно выбранных дверей машина — по прежнему 1/7, в сумме — 2/7= 24/84
а вот в каждой из двух невыбранных вероятность будет (1-2/7)/2=5/12 = 35/84
Таким образом, менять 2 изначально выбранных на одну ранее не выбранную имеет смысл, т.к. это увеличит вероятность выиграть
ну это на мой дилетантский взгляд :) при условии что ведущий как нить не жульничает
avatar
Johnny_22, кажется напутал в расчетах:
(1-2/7)/2=5/14 это в каждой из невыбранных
а в двух изначально выбранных 2/7 или 4/14
выбор тот же что и в предыдущем коменте
avatar
Johnny_22, в общем, так и есть) хотя статистическое преимущество оказывается очень небольшим, не таким, как в классическом варианте этого парадокса, где 3 двери; значит, эффект от изменения решения будет заметен только при большом числе испытаний.
avatar
и к вопросу о двух конвертах — вы пишете «если считать по умолчанию распределение денег в конвертах равномерным от нуля до бесконечности».
Так вот — не бывает равномерного распределения на бесконечном интервале )
avatar
Johnny_22, об этом я и пишу, что такое распределение не удовлетворяет аксиоматике теории вероятностей
avatar
прикол в том что даже не надо определять величину. МОжно случайным образом выбрать число, если ниже — то менять, если выше не менять. Такая стратегия даст больше, чем случайный выбор.
avatar

Читайте на SMART-LAB:
Фото
Глобальный евро по-тихому: что может означать расширение EUREP репо
Индекс доллара DXY сегодня сделал неуверенную попытку пробить 97 пунктов, но быстро свернул планы. Пока это выглядит как пауза перед событиями:...
Фото
Насколько вы довольны Mozgovik Research?
🖥 Яндекс выбирает дивиденды
IT-компания отчиталась за 4 квартал и прошлый год   Яндекс (YDEX) ➡️ Инфо и показатели     Результаты за 4 квартал — выручка: ₽436...
Фото
Россети Урал. Отчет об исполнении инвестпрограммы за Q4 2025г. Считаем дивиденды!
Компания Россети Урал опубликовала отчет об исполнении инвестпрограммы за Q4 2025г., где показаны финансовые показатели компании по РСБУ в...

теги блога Citizen

....все тэги



UPDONW
Новый дизайн