<HELP> for explanation

Блог им. OlegSh5

Как посчитать оценку для максимальной просадки портфеля стратегий ??

Вопрос к специалистам по мат статистике. Допустим есть портфель из некоррелированых стратегий на разных активах. Как математически, исходя из известных макс. просадок каждой системы, оценить доверительный интервал для максимальной просадки линейной комбинации этих систем? Ну или где почитать про это ткните, пожалуйста....

PS А как в Алготрейдинг писать?
 

Лучше оценивайте корреляцию вашего портфеля с индексом РТС. Т.к. если все будет падать, то и ваш портфель будет падать. И активы будут коррелированы.
Причем тут индекс? Я писал про портфель из некоррелированных стратегий, а не портфель ценных бумаг.
avatar

OlegSh5

OlegSh5, В момент резкого падения рынка, как в 2000 или 2008 годах все ваши прежние корреляции можно забыть. Как и стратегии.
Все акции начинают с крреляцией порядка 1 падать.

У вас коэффициенты коореляции в моделях зависят от времени?
Как вы их тогда вычисляете?


avatar

sergik99

sergik99, я торговал 2008-ой год. Акции да, с Пирсоном 1 падают в кризис, но речь повторяюсь идет о стратегиях. Стратегии нормированные на волатильность вообще 2008-ой не заметили…
avatar

OlegSh5

1 если это бот… то либо все стратегии делаешь в одном боте и тестишь, либо в вэлслабе есть тестер по портфелю
2 если торгуешь руками… то можно ожидать снижение просадки в корень квадратный из количества стратегий раз… но это должны быть реально разные стратегии… на разных таймфреймах и разных принципах… например есть 16 бумаг и 1 стратегия просадка уменьшится в 4 раза от максимальной… есть 1 бумага и 16 стратегий на разных таймфреймах и опять просадка уменьшится в 4  раза… если 16бумаг торговать по 16 стратегиям то просадка уменьшится в 16  раз...
однако есть черные лебеди в виде гэпов в 15-20%
avatar

ves2010

ves2010, Спасибо, за ответ. Нашел статью в доказательство ваших выкладок. Отставлю здесь для истории ссылку http://utkin.2stocks.ru/?p=232%C2%A0  Правда, тут в допущении о равенстве мат. ожиданий и дисперсий выкладки, но алгоритм решения для общего случая понятен в целом
avatar

OlegSh5

1. Строите динамику счета портфеля по исследуемому таймфрейму.
2. Строите последовательность относительных приращений этой динамики
3. Считаете АКФ последовательности из п.2. Если она ненулевая, то с помощью АРСС-модели строите последовательность остатков с нулевой АКФ.
4. Методом Монте-Карло строите N последовательностей «остатков». Посредством АРСС-модели из п. 3 получаете N псевдодинамик счета. Для каждой из них считаете максимальную просадку и получаете распределение максимальных просадок для портфеля. Далее «по вкусу», смотря что интересует: средняя просадка, просадка вероятность которой меньше р (р — на выбор). Я обычно с р=0,25 говорю об обязательной просадке, а с р=0,05 о «недостижимой».
avatar

А. Г.

А. Г., спасибо, пошел гуглить матчасть…
avatar

OlegSh5

А. Г., ну так, я так понял, мы анализируем только саму эквити результирующего портфеля, а тут может быть подгонка, так как анализируется в каждом случае только конкретная суперпозиция торговых стратегий. Меня больше интересует функциональная зависимость ожидаемой макс. просадки портфеля от известных оценок для макс просадок систем.
avatar

OlegSh5

OlegSh5, проанализируйте несколько портфелей. А никакой оценки макс. просадки любого портфеля из макс просадок отдельных систем получить чисто теоретически нельзя. Даже в условиях полной независимости эквити отдельных систем (что вряд ли, так как все они скорее всего зависят от состояния рынка) макспросадка портфеля будет функцией второй степени нелинейности от весов систем (ЦПТ+оценка дисперсии портфеля).
avatar

А. Г.

OlegSh5, дисперсию портфеля теоретически легко посчитать, если есть ковариационная матрица всех компонент, только из этого нельзя вывести макспросадки, поэтому такие вещи только численно монтекарлить, что сильно сомнительно в плане экстраполяции. Не проще ли и не правильнее ли задать эту оценку логически как линейную комбинацию просадок с неким ухудшающим коэффициентом?
Sergey Pavlov, да, тоже уже пришел к тому что через дисперсии и дальше по Марковицу это не оценить… Буду наверно монтекарлить…
avatar

OlegSh5

модер (т.е. я) сам поместит твой пост в алготрейдинг)
Строим эквити портфеля как взвешенную сумму эквити систем. 
Для этого портфеля считаем максимальные ДД для каждого года (квартала). Если считать этот набор чисел независимыми испытаниями, попытаться подобрать распределение, похожее на этот набор чисел. И сделать оценку по этому распределению. 
1. Это можно делать, если веса систем не подбирались с целью минимизации риска.
2. Вероятность того, что ДД следующего периода будет больше, чем максимум из предыдущих примерно равен 1 деленной на число периодов. 
3. Вопрос, а как Вы веса для отдельных систем выбираете?
avatar

SergeyJu

SergeyJu, пока никак, грубо говоря равними частями
avatar

OlegSh5

Соглашусь с SergeyJu — Строим эквити портфеля как сумму эквити систем. Соответственно по этой эквити будет посчитана и просадка. У меня это делает специализированный софт.
avatar

Joni2

Строим подневное эквити всех систем. Суммируем.
Формула для расчета максимальной просадки в экселе:


avatar

robot_bsk


Только зарегистрированные и авторизованные пользователи могут оставлять комментарии.

Залогиниться

Зарегистрироваться
....все тэги
Регистрация
UPDONW