Блог им. imagic

Скрытые возможности

Рассмотрим интересный пример, на первый взгляд имеющий мало общего с финансовыми рынками.

Игроку предложено бросить игральную кость 5 раз подряд, при этом он может остановиться в любой момент и получить столько долларов сколько выпало очков в последнем броске. Сколько заплатит нейтральный к риску игрок за возможность участвовать в такой игре?

 Такие задачи из теории игр следует решать с конца, по алгоритму Цермело.

 Допустим, у нас осталась всего одна попытка. Тогда, как легко подсчитать, в среднем можно получить 3.5 доллара. т.е., если такой эксперимент повторять много раз, средний выигрыш игрока будет стремиться к 3.5 – математическому ожиданию игры.

Это и есть риск-нейтральная цена игры, состоящей только из одной попытки.

Что, если осталось две попытки? Игрок уже знает, что для последней попытки цена игры равна 3.5, поэтому он должен сравнивать число, выпавшее в предпоследней попытке, с этой цифрой и выбирать большее значение. Т. е., если, например, выпадет «2», он должен попытаться еще раз. Если «4» — не станет и выйдет из игры. Какова тогда цена игры, состоящей из 2-х попыток? Нужно опять провести усреднение по равновероятным исходам, только теперь уже для ряда 3.5, 3.5, 3.5, 4, 5, 6. (Мы выяснили, что при выпадении 1, 2 или 3 игрок продолжит игру, и заменяем эти значения на 3.5 – ценой последующей игры) Получится 4.25.

Продолжая эти рассуждения далее от конца к началу, легко установить, что игрок всегда должен сравнивать результат выпавшей кости с ценой игры на последующем ходе.

В итоге мы получим такой ряд справедливых цен: 3.5, 4.25, 4.67, 4.94, 5.13. Последнее число и есть искомое решение задачи.

Как посчитать справедливую цену игры методом обратной индукции стало понятно, но как в нее играть, какова оптимальная стратегия? Ведь люди играют не от конца к началу, а наоборот.

Игрок при каждом броске должен сравнивать выпавшее число со справедливой ценой для данного шага (в обратном порядке) Допустим, игрок делает 1-й бросок в игре из 5 возможных ходов.  Если выпало 6 – останавливается (6 > 5.13), нет – продолжает. При втором броске останавливается, только если выпадет 5 или 6. И так далее.

Интуитивно понятно, что если игроку предоставляется огромное количество попыток, то вероятность выпадения «6» очень велика. И он должен заплатить сумму, практически равную 6.  Если ему сказать — бросай сколько хочешь, он и будет бросать пока не выпадет 6. Распределение исходов игры биномиальное и легко подсчитать, что вероятность выпадения хотя бы одной «6» в n попытках равна 1- (5/6)^n Если попыток 1000, то и вероятность почти не отличается от  1.

 Алгоритм расчета легко реализовать в R:

a<-c(1,2,3,4,5,6)

fair_price<-function(n) {

  for (i in 1:n) {

    a<-pmax(a,mean(a))

   }

print(a[1])

}


Можно построить график справедливой цены игры в зависимости от предоставленного количества бросков, из него видно, что с ростом числа предоставленных попыток цена плавно стремится к 6.

 Скрытые возможности

Стоит отметить и предельные случаи – игрок с абсолютным отвращением к риску заплатит 1 доллар, чтобы быть как минимум в безубытке при любом исходе серии испытаний. Рискофил заплатит все 6, так как будет уверен, что ему обязательно повезет.

Данная задача интересна не только   как забавный пример из теории вероятности и теории игр, но и как ключ к пониманию расчета стоимости опциона американского типа, т.е. когда его исполнение –  в данном случае выход из игры –  возможно в любой момент. Если бы игроку поставили условие, что выходить нельзя, и деньги можно получить только за последний бросок, то в силу независимости испытаний цена игры очевидна –  это 3.5. Вероятность получить «6» (так же как и «1», «2», «3»..) одинакова в любом из бросков и не зависит от предыдущих исходов.

Но если у игрока есть опция выхода, мы получаем добавочную стоимость [5.13-3.5] = 1.63. Это и будет внутренней стоимостью «опциона на выход» из игры в 5 возможных ходов.

Теперь можно перенести это понимание на торговлю на фондовом рынке. В любом инструменте или стратегии могут быть вшиты скрытые реальные опционы, которые нужно обнаружить и использовать (купить недооцененное, продать переоцененное) Самый простой модельный пример – покупка акции, если безрисковая ставка, как и вероятность банкротства компании, равна нулю (понятно, что так не бывает)  Какова оптимальная стратегия торговли? Если продолжать аналогию с игральной костью, то ежедневные рыночные цены – это сыплющиеся на трейдера реализации исходов в игре с очень большим количество ходов. И вывод очевиден – в таких условиях (когда деньги дают нулевую доходность) ничто не переиграет стратегию «купил и держи», т.е. купленную акцию вообще нельзя никогда продавать, так как всегда остается возможность еще более высокой цены, когда-нибудь, в светлом будущем. Правда, сразу становится видна некоторая абсурдность ситуации, ведь если никто не будет продавать, то не будет и рынка. В реальной жизни безрисковые ставки ненулевые и держать акцию, застрявшую в рендже, становится слишком накладно.

★1

теги блога DR. LECTER

....все тэги



UPDONW