Добрый вечер, коллеги!
Есть желание устроить нетривиальную математическую дискуссию.
Приглашаются все желающие, но, в качестве дисклеймера, могу сразу заявить, что лохам ловить здесь нечего.
Обычно я вообще не пишу на подобные темы, но 2 выпитые бутылки Borie-Manoux, Chateau Beau-Site, Saint-Estephe, 2013, настроили меня на лирический лад )))
Поэтому предлагаю начать (неначатую) дискуссию с А.Г.
ВВОДНАЯ:
Мы работаем с ценовым рядом x(i). Приращения цен — это d(i)=x(i)-x(i-1)
Мы хотим
заработать все деньги мира построить оптимальный линейный индикатор. Он представляет из себя массив коэффициентов a(i).
Таким образом, мы покупаем, когда sign(summ(a(i)*d(n-i))) >=0 и продаем в противном случае.
Эквити ТС при этом будет выглядеть так: приращение Eq(i) = d(i)*sign(summ(a(j)*d(n-j-1)))
Если мы захотим максимизировать рост эквити — у нас есть 2 варианта:
1. (классическая максимизация) — ищем минимуи summ((d(i) — summ(a(j)*d(n-j-1))))^2)
2. (максимизация по Горчакову) — ищем минимум summ((sign(d(i)) — sign(summ(a(j)*d(n-j-1)))))^2)
Первая задача решается элементарно. Но приводит к некомфортному ответу (прогноз часто промахивается мимо нужного знака приращения и дает в итоге некрасивый результат).
Вторая задача кажется нерешаемой, поскольку sign(X) — уж больно корявая функция.
Предлагаю всем желающим высказываться относительно максимизации эквити по Горчакову. Если умных мыслей не будет — завтра в течение дня приведу простое, красивое готовое решение). Ну, или намекну, как его получить)
С уважением
Таким образом, выражения для линейного прогнозирования будет:
Y(i+1) = summ(a(k)*x(i-k)). Можно сказать, типичный прогнозирующий фильтр.
Кроме этого для прогнозирования еще что-то нужно, типа относительного положения цены, дающего вероятности верх/низ, но это уже развитие вопроса.
Выражения проверялось на нейросетях и получалось вполне неплохое вытянутое облако прогноза. Не уверен, но можно попробовать найти картинку на компе.
На сем прощаюсь, т.к. по самим приращениям мне сказать нечего, не занимаюсь.
И, кстати, «максимизация» 2 не моего имени, а просто максимизация эквити Eq(i).