Swan
Swan личный блог
04 мая 2013, 12:26

Модели для ценовых приращений

Дисклаймер:  Это большой занудный пост с очень простым и довольно очевидным выводом. Поставил тег «опционы»  - не очень в тему, но всё же.

Модели для ценовых приращений
Простейшая задача (которую кстати, нужно решать чуть-ли не ежедневно) — оценить где и с какой вероятностью будет цена актива через заданное время при сохранении на рынке текущей динамики. Задачка посложнее — какова справедливая цена опциона для текущей динамики?



Решать эти задачи, да и другие, связанные с динамикой рынка очень удобно если известно распределение приращений цен. Но точное распределение приращений разумеется неизвестно — надо использовать какую-то модель.

Какие у нас вообще есть варианты:
* Эмпирическое распределение — для конкретного актива мы вычисляем что было на истории и используем это как модель для будущего.
* Нормальное (Гаусса) распределение (или лог-нормальное).
* Другие непрерывные распределения: Коши, Лапласса, Гамма (на картинке — это оно), Вейбула (в нём аж 3 параметра) и т.д.


Вариантов много — что выбрать? Критерии выбора такие:

* Распределение должно хорошо аппроксимировать реальное, то есть у модели должны быть такое параметры, чтобы «покрутив» их мы всегда бы могли получить что-то близкое к реальному
* Хорошо бы, чтобы распределение было бесконечено делимым (что это такое —  ссылка в конце поста).
* Вычисления желательно чтобы были попроще (на уровне Excel). Или, если они окажутся сложными, то чтобы овчинка стоила выделки.

На первый взгляд самое лучшее — это эмпирическое. Но! У него такие минусы:
* Сложно считать. Если мы имеем дело с 1 активом, то ещё можно посчитать, но если мы ежедневно скриним 100 активов и выбираем кажыдй раз разыне, то считать для них распределения — это целый программный комплекс должен быть.
* Это не делимое рапределение. Ну ладно, если нам нужен горизонт в Н дней, то мы можем и историю смотреть в Н дней.
* Очевидно, что если мы в ситуации с заданной ценой и волатильностью, то и эмпирику надо смотреть на тех же условиях, что практически невозможно.
* Самый большой минус — нет никаких гарантий, что будущее повторит историю! Запросто может случиться так — мы взяли, всё аккуратно посичтали, потратили кучу времени и сил, а оно возми и стрельни по волатильности процентов на 10 и все рассчёты можно выбросить.

Из других, «сложных» распределений — можно смотреть какое больше подходит и его использовать. Например, для RTS больше подходит Лапласса, но оно не делимое, то есть сразу вычисления на порядок сложнее.

И наконец, распределение Гаусса (нормальное или лог-нормальное).
Да, оно плоховато совпадает с реальным, на RTS реальное в центре явно выше и уже, а хвосты заметно толще, чем у нормального.
Зато у нормального распределения есть очень много плюсов:
* рапределение бесконечно делимо.
* все рассчёты очень простые, можно считать хоть для 1000 активов сразу — всё в рамках Excel.
* распределение хорошо изучено и для него всё известно, например тот же размер выборки для заданного доверительного интервала.

Итого, резюме.
Хотя распределение Гаусса не очень хорошо аппроксимирует реальное распределение приращений, но оно настолько удобно в использовании, что это компенсирует недостатки.
GAUSS — RULES!

 
Полный оригинал тут: swantrade.livejournal.com/41075.html
(там ещё немного занудства и ссылок по терминам, в принципе можно и не смотреть)
71 Комментарий
  • agat50
    04 мая 2013, 12:44
    Распределение хрень, можно подобрать, тем более тут зависит от задачи, мб и нормального хватит в большинстве. Вот вы скажите что делать с тем, что ЦПТ не работает? Условие «ни одно из слагаемых не доминирует, не вносит в сумму определяющего вклада» не выполняется явно. В смысле какие есть модели чтобы моделировать, например, 10 минутки по известному распределению минутов, если учитывать этот момент.
  • karapuz
    04 мая 2013, 12:51
    «Очевидно, что если мы в ситуации с заданной ценой и волатильностью, то и эмпирику надо смотреть на тех же условиях, что практически невозможно.» — нет.
    я уже на примере показывал, практическом.
    это неправильно вводить волатильность как отдельный параметр рынка, тем более как константу. волатильность сама является характеристикой распределения.
  • karapuz
    04 мая 2013, 12:59
    строй фазовое пространство
  • Стас Бржозовский
    04 мая 2013, 13:32
    С эмпирическим большой вопрос по выбору глубины исторических данных — сильно влияет на форму, а так из него получается неплохой доп инструмент для принятия решений

Активные форумы
Что сейчас обсуждают

Старый дизайн
Старый
дизайн