В связи с хайпом вокруг искуственных нейронных сетей стало интересно: насколько реально обучить сеть или дерево или иную технологию машинного обучения для восстановления вида неизвестной функции по следующим значениям обучающей выборки:
Сеть или дерево должна вычислить значение этой функции для аргумента x==97853
Философский подтекст состоит в том, что человек в состоянии определить вид этой функции совершенно достоверно и получить нулевую ошибку на валидационной выборке любого размера и сложности.
Если технологии ML не могут дать адекватного ответа на этот вопрос, то могут ли они в принципе быть полезны в торговле?
UPDATE 1: За прошедшие несколько часов 2 человека однозначно продемонстрировали способность восстановить вид искомой функции. Что подтверждает простоту озвученной задачки.
Также в голове примерно нарисовалось понимание, как будут решать Деревья. Они разобьют числовую ось на отрезки (точки разбиения насколько понимаю будут выбраны случайным образом) после чего предложат либо кусочно-постоянную либо кусочно-линейную функцию в качестве интерполяции. После чего будут нести всякую чушь и требовать увеличения объёма обучающей выборки. Причем желательно, чтобы в неё входили примеры в том числе в области 100 000.
Что же касается основного вопроса данной заметки, то уважаемый ves2010 предлагает считать сетки и ML в целом полезными, ЕСЛИ предварительно грамотно декомпозировать задачу и выделить им ровно тот участок работы, с которым они скорее всего смогут справиться.
UPDATE 2: функция следующая.
Посчитать количество цифр в десятичной записи числа и умножить на 40.
Человек решает если и не мгновенно, то вполне в состоянии уловить данную зависимость, потратив несколько часов внимания.
Причем уловив связь, он будет давать правильный ответ даже на стозначных числах.
счас граль спалю по пьяни… потом минут через 10 удолю нах
kot_vezdehot, скажите, Вы не родственник случайно Kot_Begemot ? =)