Я предпочитаю в таких случаях обращаться не к «community Smart-Lab» ( уж простите великодушно) а к LLM модельке. Результат такой.
Кто впервые вывел уравнение Блэка Шоулза?
Уравнение, ныне называемое уравнением Блэка-Шоулза-Мертона, впервые было выведено и опубликовано в статье Фишера Блэка и Майрона Шоулза в 1973 году. Эта формула ценообразования европейских опционов была представлена в работе под названием «Ценообразование опционов и корпоративных обязательств» (The Pricing of Options and Corporate Liabilities). Роберт Мертон позднее усовершенствовал и расширил эту модель, применив методы стохастического анализа и теории оптимального контроля. В частности, уравнение подробно изложено в работе Мертона 1973 года, в которой он развивает теорию рационального ценообразования опционов на акции с дивидендами.
Таким образом, первичным источником появления уравнения Блэка-Шоулза стал совместный труд Блэка и Шоулза 1973 года, а Мертон дополнил и популяризировал этот подход в своей статье того же года
Какая модель ценообразования лежит в основе уравнения Блэка Шоулза ?
Модель ценообразования, лежащая в основе уравнения Блэка-Шоулза, называется моделью геометрического броуновского движения (ГБД) для цены базового актива. Эта модель предполагает, что цена актива в непрерывном времени подчиняется стохастическому процессу геометрического броуновского движения с постоянной волатильностью и дрейфом. На этом предположении строится дифференциальное уравнение в частных производных — уравнение Блэка-Шоулза, решая которое получают теоретическую справедливую цену европейских опционов.
Модель предполагает отсутствие дивидендов на базовый актив, постоянную безрисковую ставку и возможность непрерывной торговли без транзакционных издержек.
Что такое Implaied Volatility?
Имплицитная волатильность (Implied Volatility, IV) — это ожидание рынка по поводу будущей волатильности (изменчивости) цены финансового актива, которое выводится из текущей рыночной цены опциона. Проще говоря, это значение волатильности, при котором модель ценообразования (например, модель Блэка-Шоулза) дает теоретическую цену опциона, равную его рыночной цене.
Мой вывод:
Модель ГБД ничего не знает о будущем. По определению. Никакими строгими математическими манипуляциями это знание она приобрести не может. Поэтому IV, которая предполагает, что о будущем кое что известно, находится вне ее (модели) компетенции.
Российский фондовый рынок начал 2026 год со снижения: Индекс МосБиржи просел на 2,5%. Одна из причин негативной динамики — достаточно большой объём дивидендов, отсечки по которым пришлись на...
РЭСК. Надбавки на 26г. установлены. Изменение целевой цены
Главное управление “Региональная энергетическая комиссия” Рязанской области опубликовала постановление №329 от 24.12.2025г. об установлении сбытовой надбавки гарантирующего поставщик...
Не оливье единым: итоги 2025 года и новая иерархия на рынке готовых салатов
Российский рынок готовых салатов в 2025 году продемонстрировал смену лидера: традиционный фаворит «Оливье» уступил первое место «Сельди под шубой», показав при этом самое значительное подорожание...
Илья,
«Эмитент ведет работу над единым предложением для держателей облигаций и других финансовых инструментов, условия которого будут соответствовать этой модели и обязательствам перед финанс...
Взглянем на платину🔎
Драг. металлы сейчас довольно интересны. Вот в платине (мартовский фьючерс PLT-3.26) нарисовался треугольник. Вчера вечером был ложный выход вверх из этого треугольника. Сегодн...
Бианка Премиум: Отмываем доходность (легально) и гладим баланс Дамы и господа, сегодня у нас на разборе кейс из мира «тяжелого люкса» Эмитент: ООО «Бианка Премиум» Облигация: БО-01 (RU000A1097X8). Нет...
❗️❗️Серебряная лихорадка: выбираем правильный инструмент.
Сегодня цена серебра находится на высоких уровнях, торгуясь в районе $88 за тройскую унцию и показывая рост более чем на 170% за последн...
Минимальная розничная цена 0,5 л водки с января 2026 года составила 409 руб., увеличившись на 60 руб. (17%).
Лакомство становится недоступным для петровичей
Кто впервые вывел уравнение Блэка Шоулза?
Уравнение, ныне называемое уравнением Блэка-Шоулза-Мертона, впервые было выведено и опубликовано в статье Фишера Блэка и Майрона Шоулза в 1973 году. Эта формула ценообразования европейских опционов была представлена в работе под названием «Ценообразование опционов и корпоративных обязательств» (The Pricing of Options and Corporate Liabilities). Роберт Мертон позднее усовершенствовал и расширил эту модель, применив методы стохастического анализа и теории оптимального контроля. В частности, уравнение подробно изложено в работе Мертона 1973 года, в которой он развивает теорию рационального ценообразования опционов на акции с дивидендами.
Таким образом, первичным источником появления уравнения Блэка-Шоулза стал совместный труд Блэка и Шоулза 1973 года, а Мертон дополнил и популяризировал этот подход в своей статье того же года
Какая модель ценообразования лежит в основе уравнения Блэка Шоулза ?
Модель ценообразования, лежащая в основе уравнения Блэка-Шоулза, называется моделью геометрического броуновского движения (ГБД) для цены базового актива. Эта модель предполагает, что цена актива в непрерывном времени подчиняется стохастическому процессу геометрического броуновского движения с постоянной волатильностью и дрейфом. На этом предположении строится дифференциальное уравнение в частных производных — уравнение Блэка-Шоулза, решая которое получают теоретическую справедливую цену европейских опционов.
Модель предполагает отсутствие дивидендов на базовый актив, постоянную безрисковую ставку и возможность непрерывной торговли без транзакционных издержек.
Что такое Implaied Volatility?
Имплицитная волатильность (Implied Volatility, IV) — это ожидание рынка по поводу будущей волатильности (изменчивости) цены финансового актива, которое выводится из текущей рыночной цены опциона. Проще говоря, это значение волатильности, при котором модель ценообразования (например, модель Блэка-Шоулза) дает теоретическую цену опциона, равную его рыночной цене.
Мой вывод:
Модель ГБД ничего не знает о будущем. По определению. Никакими строгими математическими манипуляциями это знание она приобрести не может. Поэтому IV, которая предполагает, что о будущем кое что известно, находится вне ее (модели) компетенции.