Займемся бессмыслицей. Никакого прогнозирования, просто попробуем методами вейвлет преобразований и CNN ответить на вопрос — есть или нет разница в цикличности при росте фишки и падении? Эллиот чертил 3 волны вверх и 2 вниз. Давайте почертим и мы.
Данные я взял недельные, от понедельника до пятницы, но с разбивкой по 15 минуткам, итого ряд в 175 элементов. Судя по прошлым результатам, мизерная длина, и никакой цикличности там нет. Но...«а вдруг?!». Ну а разбивка недельная, в надежде уловить недельную цикличность, все таки понедельник это «день тяжелый», пятница это «тяпницы», четверг это маленькая пятница. В общем каждый день недели уникален и помню какие то корреляции/антикорреляции даже были, вроде пятница и понедельник шли вразрез, а четверг и пятница шли вместе. Впрочем точно не помню.
Каждому ряду в 175 отчетов я присвоил лейбл (1 рост, 0 падение). Ряд прогнал через вейлет преобразование, получив квадратную картинку. Все это добро загнал в CNN и стал ждать чего нейросеть намутит. В теории, после вейвлет преобразования, на полученной картинке, не должно быть никакого намека на то росла фишка или нет. Следы наличия тренда присутствуют, но какого именно не указывается. Хотя это не точно. А вот точно что должны быть следы цикличности, и если при росте и падении цикличность разная то точность классификации должна быть больше 0,5… Хотя это не точно. Ну нам жалко чтоли, попробовать? Пуская нейросетка крутит колесико. Крутило колесико нейросеть долго....:
Более 200 эпох нейросетка вообще ничего цеплять не могла, даже на трейне, болтаясь практически вокруг 50% угадайки. Тормознулось обучение на 7 часу обучения, по валидации.
А это матрица, так хорошо знакомая всем машинленингистам пишущих на пайтон:

По диагонали угаданное. В общем на тесте угадали 66,5%, на валидации 56%, а на тесте, что нас интересует больше всего — 60%.
То есть как бы и правда при падении и при росте частоты разные?! И мы типа это выловили?! Может быть, но это не точно. Смущает что картинки вейвлет преобразования выглядят жутко похожими:

То есть преобразовывают в частоты разные графики, а на человеческий взгляд, картиночки выглядят одинаково. И визуально никаких периодов не выявлено. Но это на человеческий взгляд, если посмотреть на матрицы с цифрами, то можно увидеть что они разные, то есть формы на рисуночках одинаковые, но цифры за ними разные стоят.
Лейблы я ставил только два: рост и падение, а сами понимаете бывает рост на +0,1% и бывает падение на -0,1%, что практически одинаково. Поэтому если использовать оценки уверенности нейросети то получим более интересную картинку:

Как видим если убрать случаи, когда нейросеть уверенно в своем решении менее чем на 55% («50/50»), то как раз получим случаи со слабо выраженной динамикой. И наоборот, когда сеть уверенна в прогнозе на более чем 57,5%, то там и точность 67,87 (для роста) и 100-23,9 (для падения) и движение в предсказанную сторону более выраженное.
Как то так.
А вы что вообще хотели показать? Как круто вы овладели методами machine learning применительно к анализу временных рядов ??
Ну, вы хотя бы написали какой именно ряд (инструмент) исследуете, где зависимость то ищите ?
Если хотите, то можем пообсуждать… Вы с какой целью вейвлет преобразование применяли?
Люблю когда люди не просто пишут отсебятину, а делятся результатами своих исследований!