А как из сказанного возникает известная формула Блэка-Шоулза? А очень просто. Функция выплат по опциону колл со страйком S такая

Каким может быть будущее распределение цен? Предположим, что приращение натурального логарифма цены имеет нормальное распределение со средним а и дисперсией сигма в квадрате

Тогда, чтобы взять среднее, нам надо представить функцию выплат, как функцию от приращения логарифма цены. Это просто. Из свойств логарифма (9-й класс средней школы в мое время) мы легко получим

где С — текущая цена
И отсюда сразу получаем функцию выплат, как функцию от приращения логарифма цены и известных текущей цены С и страйка S

Для дальнейших выкладок нам понадобится одно обозначение уже из курса теории вероятностей для нормального распределения, а именно «размер» «хвоста распределения»

Обозначим LN(S)-LN( C ), как s маленькое.
Тогда справедливая цена, умноженная на 1+R, перепишется в виде интеграла

Произведем в нем замену х-а на х (10-й класс средней школы)

И еще одну замену
на х

Теперь все готово, чтобы выразить справедливую цену, умноженную на 1+R, через функцию N(х)
Ну вернем назад безрисковую ставку и получим формулу справедливой цены опциона колл, как функцию от а и сигма

А как из нее получить формулу Блэка-Шоулза? Для этого надо сделать несколько дополнительных предположений об 1+R, а и сигма. А именно

Отметим, что вторые две формулы имеют место в случае, когда приращения логарифмов LN(C(t+1))-LN(C(t)), t=0,...,T-1, С(0)=С, представляют из себя последовательность независимых нормально распределенных случайных величин со средним
и дисперсией
.
Также отметим, что если приращения логарифмов цен просто независимые случайные величины с указанными постоянными средними и дисперсиями, то из центральной предельной теоремы для T>30 мы получим, что распределение LN(C(T))-LN( C ) близко к нормальному с указанными средним и дисперсией. Так что и в этом случае формула Блэка-Шоулза, хоть и приближенно, но «работает».
А откуда берется равенство среднего LN(C(t+1))-LN(C(t)) величине
при дисперсии
?
А очень просто: если имеет место это равенство для среднего нормально распределенной величины LN(C(t+1))-LN(C(t)), то среднее относительного приращения (C(t+1)-С(t))/С(t) равно r, т. е. в среднем цены прирастают на безрисковую ставку.
Но мы получили несколько более широкую формулу справедливой цены для случая нормальности

из которой мы можем получать справедливые цены и при других моделях будущих а и сигма. Мы вообще можем предположить, что эти величины также являются случайными с плотностями g и h, соответственно. И тогда формула справедливой цены опять выразится через интеграл

Но это уже другая история, как и вывод формул для более сложных платежных поручений.
Ну и где тут «безарбитражность» и прочая лабуда с частными производными?
Что-то даже в институте не припомню таких сложностей)
Ну это не 10 класс точно. Не хватает аксиоматики, а именно откуда он произошел — т.е. понимание уравнения теплопроводности и граничных условий. Ну или стохастические процессы с дискретным временем. А это уже уравнения математической физики и стох процессы, как минимум 3 курс мехмата.
Вы очень просто работаете с распределениями, используете ЦПТ, а по хорошему для этого нужны основы функционального анализа (это 2 курс мехмата), без этого не понять разницу между плотностями и функцией распределения, нужно знать меру Лебега, это опять же функциональный анализ.
А уж вопросы, связанные с переходом от непрерывной трактовки к дискретной — я уж молчу )))