А как из сказанного возникает известная формула Блэка-Шоулза? А очень просто. Функция выплат по опциону колл со страйком S такая
Каким может быть будущее распределение цен? Предположим, что приращение натурального логарифма цены имеет нормальное распределение со средним а и дисперсией сигма в квадрате
Тогда, чтобы взять среднее, нам надо представить функцию выплат, как функцию от приращения логарифма цены. Это просто. Из свойств логарифма (9-й класс средней школы в мое время) мы легко получим
где С — текущая цена
И отсюда сразу получаем функцию выплат, как функцию от приращения логарифма цены и известных текущей цены С и страйка S
Для дальнейших выкладок нам понадобится одно обозначение уже из курса теории вероятностей для нормального распределения, а именно «размер» «хвоста распределения»
Обозначим LN(S)-LN( C ), как s маленькое.
Тогда справедливая цена, умноженная на 1+R, перепишется в виде интеграла
Произведем в нем замену х-а на х (10-й класс средней школы)
И еще одну замену на х
Теперь все готово, чтобы выразить справедливую цену, умноженную на 1+R, через функцию N(х)
Ну вернем назад безрисковую ставку и получим формулу справедливой цены опциона колл, как функцию от а и сигма
А как из нее получить формулу Блэка-Шоулза? Для этого надо сделать несколько дополнительных предположений об 1+R, а и сигма. А именно
Отметим, что вторые две формулы имеют место в случае, когда приращения логарифмов LN(C(t+1))-LN(C(t)), t=0,...,T-1, С(0)=С, представляют из себя последовательность независимых нормально распределенных случайных величин со средним и дисперсией .
Также отметим, что если приращения логарифмов цен просто независимые случайные величины с указанными постоянными средними и дисперсиями, то из центральной предельной теоремы для T>30 мы получим, что распределение LN(C(T))-LN( C ) близко к нормальному с указанными средним и дисперсией. Так что и в этом случае формула Блэка-Шоулза, хоть и приближенно, но «работает».
А откуда берется равенство среднего LN(C(t+1))-LN(C(t)) величине при дисперсии ?
А очень просто: если имеет место это равенство для среднего нормально распределенной величины LN(C(t+1))-LN(C(t)), то среднее относительного приращения (C(t+1)-С(t))/С(t) равно r, т. е. в среднем цены прирастают на безрисковую ставку.
Но мы получили несколько более широкую формулу справедливой цены для случая нормальности
из которой мы можем получать справедливые цены и при других моделях будущих а и сигма. Мы вообще можем предположить, что эти величины также являются случайными с плотностями g и h, соответственно. И тогда формула справедливой цены опять выразится через интеграл
Но это уже другая история, как и вывод формул для более сложных платежных поручений.
Ну и где тут «безарбитражность» и прочая лабуда с частными производными?
никак.
Что-то даже в институте не припомню таких сложностей)
Ну это не 10 класс точно. Не хватает аксиоматики, а именно откуда он произошел — т.е. понимание уравнения теплопроводности и граничных условий. Ну или стохастические процессы с дискретным временем. А это уже уравнения математической физики и стох процессы, как минимум 3 курс мехмата.
Вы очень просто работаете с распределениями, используете ЦПТ, а по хорошему для этого нужны основы функционального анализа (это 2 курс мехмата), без этого не понять разницу между плотностями и функцией распределения, нужно знать меру Лебега, это опять же функциональный анализ.
А уж вопросы, связанные с переходом от непрерывной трактовки к дискретной — я уж молчу )))
Из курса теорвера (это действительно ВУЗ) только определения математического ожидания и нормального распределения.
ЦПТ — это просто замечание, к выкладкам не имеющее никакого отношения.
Это как в учебниках по квантовой механике, Ландау-Лифшиц — «очевидно, что» и равенство, начинаешь разбираться — 5-6 страниц пропущенных выкладок, которые могут повторить только сдавшие теорминимум. )
solarm дело говорит. Это не 10 класс. Уровень материала — второй курс физтеха, матмеха.
Думаю, что с вероятность 99%, 99% школьников сломаются об эту формулировку:
это не школьный уровень. будьте реалистом.
Это блин какая-то 239 физмат школа наверное
Но для современных детей, которые во втором классе ещё таблицу умножения нетвёрдо знают — это уже кажется недостижимой магией из другого мира.
Полистайте оглавление https://www.labirint.ru/books/593847/point/gm/?point=gg19&gclid=CjwKCAiA1rPyBRAREiwA1UIy8C5hiYphcwMmhq6jHmRmBRAjRwValEXQdsrtm-E8tHa_sHySgwkoJBoCXsQQAvD_BwE
Но знание их, как отмечено выше, не позволит применить на этом уровне.
И внимание. Сейчас в обычном учебнике есть столь великий своим названием Бином Ньютона. В мое время не было. Также появились элементы теорвера.
Показать, что «какой я умный»? Или, что «деревья раньше были зеленее»? ))
Главное — практический результат!
Кстати, на правах чайника хотел спросить:
1)являются ли синонимами среднее арифметическое и матожидание?
2) насколько правильно рассчитывать матожидание для рядов с распределением отличном от нормального?
1) Нет, среднее арифмитическое — это оценка матожидания при условии, что во всех исходах матожидание одно и то же. Совпадают они только в одном случае: все исходы имеют одинаковую вероятность и иных исходов нет.
2) Матожидание определяется для любого распределения не только для нормального.
Врач-бондиатОр, какая грустная картинка...
К сожалению, она вполне адекватно отражает состояние дел в отечественном образовании...
Самообразование никто не отменял, да и возможностей для этого сейчас на много порядков больше чем при совке.
У нас опционы на фьючерсы, так что можно сразу положить безрисковую ставку 0.
Ну и страйк более привычно обозначать буквой K, но это ерунда, конечно.
А вот последний переход к двойному интегрированию по (a, sigma), уже имеет философские трудности, кмк.
— доходность (дивиденды, q) и безрисковая ставка ® в БШ учтены, читайте учебники;
— r и q сдвигают гиптетическую поверхность волатильности в сторону на экспоненту (-r*t) и (-q*t) соответственно, создавая ценовой разрыв между коллами и путами одного страйка;
— если один из этих параметров <0, цены далёких страйков могут показывать знак "-", что противоречит логике и колл/пут-паритету;
— в случае с торговлей фьючерсом (q=0, r=0) эти параметры неправильно изображают тренды (ставят позицию дельтой против тренда), логично было бы использовать их отрицательные значения (как бы сам себе доходность платишь), но тогда цены на краях отрицательные;
— так что остаётся только «улыбка», причём стационарная (которых кстати правильных целый спектр, т.е. несколько).
А. Г., «неликвидность» этих опционов — лень маркет-мейкеров и преступная халатность мосбиржи.
На том же е-мини или спай ликвидны все опционы, включая «глубоко-в-деньгах».
Основная причина такого плачевного положения на ОФРТС — флуд-контроль, вшитый в протокол сигейт на невероятно низких значениях 30 транзакций в секунду (по дефолту).
1. Приращения логарифмов цен распределены по нормальному закону с постоянной дисперсией.
2. Приращения логарифмов цен независимы.
3. Среднее относительного приращения цены равно r -безрисковой ставке.
А для приближенного равенства и того меньше
1. Приращения логарифмов цен независимы с постоянными средним и дисперсией.
2. Среднее приращения логарифма цены равно r-sigma^2/2, дисперсия sigma^2, где r — безрисковая ставка.
1. Модель геометрического броуновского движения и мои пп. 1-2 из первого перечисления — это одно и тоже.
2. П. 3 и выплата дивидендов — суть вещи несовместные. И из п. 3 сразу следует отсутствие дивидендов, т. е. мы имеем более общее условие.
Остальное, как видите, вообще значения не имеет при выполнении п. 3. Это все перечисление достаточных условий для выполнения п. 3. Но не необходимых. А п. 3 является необходимым и достаточным условием выполнений Б-Ш при условии пп. 1 и 2 или, что эквивалентно, геометрического броуновского движения.
но БШ очень грубо гворя считает что из любой точки цена может пойти в верх и вниз с одной вероятностью...
Ну если на примере то рубль стоит 62 и по БШ курс рубля +10% и -10% это события с одинаковой вероятностью...
Вы же не считаете так… или считаете?
А. Г., только смещение приращения не «вверх», а «вниз»? Писал об этом в одном из моих постов. При r == 0
a = -s^2/2
При воле s==30% инвестор имеет (или его имеют?) на величину даунтренда a==(-4.5)%
А. Г., я же в Ваших обозначениях написал откуда отрицательный дрейф (то есть «даунтренд») берется.
А. Г., с этим не спорю. Просто акцентирую внимание, что если уж мы договорились жить в мире приращения логарифмов, то у нас в «том мире» будет отрицательное смещение. Иными словами бесконечный, беспросветный и вечносуществующий даунтренд. Так сказать, привет инвесторам.
вероятность выкинуть орел ( зеленую свечу 0,5) как и решка
второй раз выкинуть орел 0,25...
третий раз подряд еще меньше....
соответенно с зелеными свечами повторение с каждой последющей свечой становится все мало вероятнее
И тут кстати есть обяснение — это закон спроса
Чем выше цена тем ниже спрос… чем выше вырасла цена — тем меньше желающих купить...
БШ — это вообще никак не учитывает
Еще БШ не учитывает цикличность… ( её вообще мало кто учитывает)
Konstantin, а какие аргументы в пользу того, что прошлая информация на рынке имеет хоть какое-то влияние на будущие приращения цен?
Доказательную базу хотя бы 100 событий в год можно набрать?
Konstantin, Может быть, мне трудно понять смысл сказанного Вами из-за большого числа грамматических ошибок. (С мобилы набирали?)
Но пока что звучит так, что Вы плохо понимаете теорвер для задач с независимыми испытаниями.
Я прошу Вас привести экспериментальные аргументы, что на рынке испытания зависимы, а Вы меня отсылаете к известной задаче о монете с независимыми исходами. Про которую также известно, что её часто неправильно интерпретируют.
С уважением.
Практический эксперемент:
DXY (индекс доллара)
Индикатор RSI (14) показывает значение 78,81, т.е. Из последних 14 свечей 78.81 %, были растущие (11 свечей) и всего три красные свечи
По БШ выходит что вероятность растущей свечи и падающей равны ( с поправкой на безрисковую ставку)
Но опыт говорит, что когда происходит перекос 80/20 и более в одну из сторон, то и будующие значения цен имеют не нормальное распределение.
Если взять данные с 2007 года, то максимум в 2008 году было 12 растущих свечей подряд....
В теории я не исключаю и возможность 14 зеленых свечей подряд
Но максимум за доступную историю я нашел в 1997 году RSI 86.99 (13 зеленых свечей подряд) после чего
И в каждом из этих случаев цена начинала двигаться в противоположном направлении...
Грубо говоря если взять все исторические данных и посчитать максимальное количество однотипных свечей подряд и взять это число за 100%, то все остальные серии свечей счиатть как долю от максимального, то можно построить график вероятностей движения в противоположном направлении при приближениях к 0 и к 100
Konstantin, спасибо за развернутый ответ. Это дневки, правильно понимаю?
В данном случае срабатывает ловушка малой выборки как мне кажется.
Давайте вернемся к монете. Начинаем её подбрасывать. Изучаем серии орлов. Допустим, по небольшой выборке в 10 000 испытаний (это примерно 40 торговых лет дня дневок) обнаруживаем, что максимум было 15 орлов подряд. Означает ли это, что в следующий раз после 14-го орла надо делать ставку на решку? Вроде как зная в точности внутреннюю механику системы мы скажем «нет».
А если для нашей выборки просто чудом всё так сложилось, что мы ни разу не видели более длинную серию, хотя согласно теорверу на такой выборке вероятность серии в 20 орлов на самом деле (допустим) 1%?
Вот и на рынке меня терзают смутные сомнения. Ну, взяли мы индикатор RSI. Ну, нашли на истории 5 раз за всю жизнь рынка цепочку из 12 зеленых баров. С точки зрения статистики мы никакую закономерность не обнаружили. Просто занесли в раздел «курьёзные факты» некоторое наблюдение.
https://en.wikipedia.org/wiki/Generalised_hyperbolic_distribution
или
https://en.wikipedia.org/wiki/Normal_variance-mean_mixture