Спецом для трейдеров. Не столько сложная, сколько интересная:
Вы можете бросить кубик до трех раз. После каждого бросания или забираете столько долларов сколько выпало на кубике либо играете дальше.
К примеру: кинули 2 раза, на второй раз выпало 5 и вы решаете остановиться, забираете себе 5$.
Определить оптимальную стратегию игры и ожидаемый выигрыш?
если в первый раз 5 то заканчиваем, если во второй 3 тоже заканичиваем, если 1 или 2 во второй раз, то играем в 3й. вроде простая задача. Подразумеваем что кубик стандартный 6 цифр.
На последнем шаге приходится брать то, что выпало. Математическое ожидание последнего шага равно
(1 +… + 6) / 6 = 3.5.
На предпоследнем шаге, если выпало 4, 5 или 6, уже не стОит отвергать результат и пытаться ещё раз на последнем шаге. А если выпало 1, 2 или 3, то имеет, т.к. математическое ожидание последнего шага 3.5 больше, чем то, что выпало. Математическое ожидание предпоследнего шага равно
3/6 * 3.5 + 1/6 * (4 + 5 + 6) = 4.25.
На предпредпоследнем шаге (он первый в этой задаче), если выпало 1, 2, 3 или 4, то стоит поиграть по оптимальной стратегии на последующих шагах, где математическое ожидание равно 4.25, а если выпало 5 или 6, то лучше остановиться. Математическое ожидание этого шага равно:
4/6 * 4.25 + 1/6 * (5 + 6) = 28/6 = 4.666..
В итоге, оптимальная стратегия выглядит так:
* бросить кубик 1-й раз; если выпало 5 или 6, то остановиться;
* бросить кубик 2-й раз; если выпало 4, 5 или 6, то остановиться;
* бросить кубик 3-й раз и взять, что выпало.
Кстати, эта задачка имеет некоторое отношение к опционам (похожая логика используется при расчёте справедливых цен методом деревьев).
_sk_, Спасибо за подробное рассуждение. Такая логика пахнет тач-опционом...
К сожалению, почти все вероятностные задачки на различные виды лотерей не учитывают цену билетика. Точнее, принимают ее равной нулю. Это иногда приводит к неприятным и парадоксальным ответам.
Можно ли обобщить задачу на случай непрерывного времени и сказать, что имеется граница оптимальной остановки по достижению которой нужно фиксировать профит и уходить?
Мат.ожидание при каждом броске = 3,5.
Я консервативный игрок. Если при первом броске выпало больше 3, то забрать выигрыш. Если выпало 1, 2, 3, то бросать ещё раз.
Если при втором броске выпало больше 3, то забрать выигрыш.
Если выпало 1, 2, 3, то бросать третий раз.
Ну, если все три раза выпадают цифры 1,2 и 3, то значит не повезло.
Применительно к спекуляции акциями тут такой смысл: если акция немного выросла в цене, то либо забрать сейчас небольшую прибыль, либо подождать, когда она ещё больше вырастет. Но, акция может и упасть буквально через несколько секунд.
К инвесторам это не относится. Они ждут до победного момента. Пока акция не достигнет целевой цены.
Понять как считать сначала на самом деле проще, тогда не нужно знать что такое матожидание (ну почти).
Сколько бы у вас не выпало на первом броске, у вас будет ещё 2 шанса выбросить больше того что у вас выпало.
Вероятность выбросить больше скажем 5ти за два броска равна:
1/6 (выпала 6ка и вы закончили) + (5/6) (выпало 5 или меньше) и снова хотим 6ку, шанс 1/6 итого вероятность выбросить больше 5ти:
Пусть кубик нелинейный: 1, 2, 3, 4, 8, 9
Имеем на руках 4, стоит ли кинуть еще раз? По вашему методу вероятность улучшить результат <50%, значит нет.
Но матожидание 4.5 говорит другое. Так что без него никуда.
LogikoMen, исходов множество. Цена может гулять как угодно, хоть по синусойде. Важна цена X и Y. Но я виду что вы не склонны отвечать на мои вопросы, хотя вроде бы просили просветить. Так что не вижу смысла продолжать.
Газета «Коммерсант» выпустила тематическое приложение о страховом рынке
Много интересных материалов для тех, кто работает в отрасли и тех, кто так или иначе с ней связан. Полагаем, публикации могут быть интересны и нашим инвесторами. Для удобства подготовили краткие...
🥳 В десяточку! Два выпуска на сумму более 10 млрд рублей
ГК «А101» завершила сбор книги заявок на два выпуска облигаций общим объемом 10,5 млрд рублей. Начало торгов состоится 26 декабря.
📌Итоговые параметры выпуска БО-001P-02:...
Российские банки в 2025 году могут получить 3,6-3,7 трлн руб. прибыли
По данным Банка России, совокупная чистая прибыль коммерческих банков РФ в ноябре 2025 года выросла на 27% по сравнению с октябрём, но одновременно снизилась на 24% в годовом выражении и составила...
Whisper,
Вчера днем всем дали понять «роста ММВБ» в этом году ждать не получается.
Всех с хаев отскока октябрь 2025 — декабрь 2025 начали планомерно спускать на землю
Так как вчера отскок опу...
Брокер "КИТ Финанс" начал собирать заявки на обмен заблокированными активами — РБК Брокер «КИТ Финанс», который в 2022 году принял иностранные бумаги брокерских клиентов «Сбера», начал собир...
Basis SDN включен в реестр российского ПО😁 Новость
«Basis SDN включен в реестр российского ПО»
Звучит как Базис включён в SDN😁
Вы там аккуратнее с названиями то Авто-репост. Читать в блог...
IZIB, конечно можно, но с учётом риска и всё такое, просто стал писать и публиковать на своём канале аналитику после шоу с рейтингами, просто рррь)) пришлось таки перелопачивать весь портфель перес...
Брокер "КИТ Финанс" начал собирать заявки на обмен заблокированными активами — РБК Брокер «КИТ Финанс», который в 2022 году принял иностранные бумаги брокерских клиентов «Сбера», начал собир...
Обновлен список стран для автоматического обмена данными: что изменилось для инвесторов С 22 декабря 2025 года вступил в силу обновленный перечень государств, с которыми Россия осуществляет автоматиче...
На последнем шаге приходится брать то, что выпало. Математическое ожидание последнего шага равно
(1 +… + 6) / 6 = 3.5.
На предпоследнем шаге, если выпало 4, 5 или 6, уже не стОит отвергать результат и пытаться ещё раз на последнем шаге. А если выпало 1, 2 или 3, то имеет, т.к. математическое ожидание последнего шага 3.5 больше, чем то, что выпало. Математическое ожидание предпоследнего шага равно
3/6 * 3.5 + 1/6 * (4 + 5 + 6) = 4.25.
На предпредпоследнем шаге (он первый в этой задаче), если выпало 1, 2, 3 или 4, то стоит поиграть по оптимальной стратегии на последующих шагах, где математическое ожидание равно 4.25, а если выпало 5 или 6, то лучше остановиться. Математическое ожидание этого шага равно:
4/6 * 4.25 + 1/6 * (5 + 6) = 28/6 = 4.666..
В итоге, оптимальная стратегия выглядит так:
* бросить кубик 1-й раз; если выпало 5 или 6, то остановиться;
* бросить кубик 2-й раз; если выпало 4, 5 или 6, то остановиться;
* бросить кубик 3-й раз и взять, что выпало.
Кстати, эта задачка имеет некоторое отношение к опционам (похожая логика используется при расчёте справедливых цен методом деревьев).
спасибо
_sk_, Спасибо за подробное рассуждение. Такая логика пахнет тач-опционом...
К сожалению, почти все вероятностные задачки на различные виды лотерей не учитывают цену билетика. Точнее, принимают ее равной нулю. Это иногда приводит к неприятным и парадоксальным ответам.
Можно ли обобщить задачу на случай непрерывного времени и сказать, что имеется граница оптимальной остановки по достижению которой нужно фиксировать профит и уходить?
Я консервативный игрок. Если при первом броске выпало больше 3, то забрать выигрыш. Если выпало 1, 2, 3, то бросать ещё раз.
Если при втором броске выпало больше 3, то забрать выигрыш.
Если выпало 1, 2, 3, то бросать третий раз.
Ну, если все три раза выпадают цифры 1,2 и 3, то значит не повезло.
К инвесторам это не относится. Они ждут до победного момента. Пока акция не достигнет целевой цены.
Понять как считать сначала на самом деле проще, тогда не нужно знать что такое матожидание (ну почти).
Сколько бы у вас не выпало на первом броске, у вас будет ещё 2 шанса выбросить больше того что у вас выпало.
Вероятность выбросить больше скажем 5ти за два броска равна:
1/6 (выпала 6ка и вы закончили) + (5/6) (выпало 5 или меньше) и снова хотим 6ку, шанс 1/6 итого вероятность выбросить больше 5ти:
1/6+5/6*1/6 = 30%, играть не стоит,
В случае 4ки:
2/6+4/6*2/6 = 55.6% вот здесь уже можно поиграть
Пусть кубик нелинейный: 1, 2, 3, 4, 8, 9
Имеем на руках 4, стоит ли кинуть еще раз? По вашему методу вероятность улучшить результат <50%, значит нет.
Но матожидание 4.5 говорит другое. Так что без него никуда.