Предлагаю поломать голову над следующей задачкой. Ее решение вполне применимо в трейдинге и возможно кому-то поможет.
Имеется N случайных величин (СВ), распределенных по нормальному закону. Каждая из них имеет отрицательную корреляцию K одновременно со всеми остальными СВ. Необходимо найти минимальное возможное значение K и построить график K(N). Дополнительно можно построить график корреляции между суммой N-1 CВ и оставшейся СВ.
Как-то некорректно поставлена задача. Когда говорят о взаимо-корреляционной функции или авто-корреляционной функции, то имеется ввиду как раз функция (набор СВ), но ни как не о числе. Если у вас нормальное распределение (Гаусов купол) то как каждое конкретное число может иметь отрицательную корреляцию относительно любого другого числа?
Хорошую генерацию последовательностей с наименьшей величиной взаимной корреляции (одной последовательности относительно другой последовательности) дают коды Голда.
автокорреляция это когда следующее приращение зависит от предыдущего во временном ряде.
Автокорреляция это свертка функции (временного ряда) со своей копией, сдвинутой на N отчетов K=f(x)*f(x-i). Каждое i дает свое значение автокорреляционной функции. Если система динамическая и на вход поступают новые значения временного ряда и вы пересчитываете автокорреляцию, то да следующее приращение автокоррелционной функции зависит от предыдущего, так как эти отчеты используются в расчете.
Все же не понятно, что именно вам нужно. Значение автокорреляционной функции зависит от самих СВ и больше ни от чего, вы можете только сдвижку менять, при определенной сдвижке вы можете получить локальный минимум корреляции, который при получении следующего СВ может уже и не быть локальным минимумом.
Соответственно, вы хотите синтезировать некую функцию корреляция которой с исходными СВ будет минимальна или что?
1) Теория вероятностЕЙ, конечно же. (UPD: Спасибо, что исправили).
2) Судя по всему, в условие надо дописать, что отдельные величины Xi имеют одинаковые математические ожидания EXi и дисперсии Var Xi.
3) Без ограничения общности считаем, что математическое ожидание каждой из величин равно 0 и дисперсия совпадает со вторым моментом E Xi^2 и равна 1, тогда корреляция равна математическому ожиданию произведения двух таких случайных величин r = E XiXj. Сумма S = X1+...+XN величин имеет неотрицательный второй момент E S^2 >= 0, который равен N*EX1^2 + N*(N-1)*EX1X2 = N*1 + N*(N-1)*r, откуда r >= -1/(N-1).
4) Наверное, надо ещё доказать, что существует многомерное нормальное распределение, для которого это равенство достигается. В этом случае K(N) = -1/(N-1) — график гиперболы.
5) Самое сложное — теперь придумать этому применение в трейдинге. :)
_sk_, Гениально! Я предполагал что график должен быть похож на гиперболу, но не додумался через дисперсию суммы решить. А оказалось, что очень даже красивое решение. Спасибо
SECRET, есть другое решение. Пусть есть N случайных чисел x1, х2, ..., Хn нормально распределенных и с мат ожиданием 0 и дисперсией 1. Пусть корреляция между ними одинакова и равна К. Пусть есть СВ Y — нормально распределенная и с корреляцией со всеми Xn равной тоже К. Найдем корреляцию суммы Х1+Х2+...+Хn и Y => r =( E[(X1+..+Xn)*Y] — E(X1+...+Xn)*EY ) / корень(D(X1+..+Xn)*D(Y)).
Упростим выражение:
1) E[(X1+..+Xn)*y] = Е(X1*Y)+E(X2*Y)+...+E(Xn*Y) = K+K+...+K=N*K
2) E(X1+...+Xn)*EY = 0, т.к. EY =0
3) D(X1+..+Xn)*D(Y) = D(X1+..+Xn)*1= D(X1)+...+D(Xn)+2*K*N!/(N-2)!/2! => D(Xn) =1 => N+K*(N-1)*N
Тогда получаем упрощенное выражение:
r=N*K/корень(N+K*(N-1)*N) = корень(N/(1+K(N-1)))*K
Известно что r>=-1 тогда:
корень(N/(1+K(N-1)))*K >=-1, возведем в квадрат обе части:
N/(1+K*(N-1))*K^2>=1
N*K^2-(N-1)*K-1>=0, решаем квадратное уравнение относительно К и получаем корни:
K=1, K=-1/N.
Таким образом r>=-1 при К>=-1/N для СВ Х1, Х2, ..., Хn и Y.
Если сделать замену Y=Xn+1 то K>=-1/(Nn+1 - 1)
SECRET, спасибо за интересную задачу. посмотрел решение второй части задачи, попробовал посчитать корреляцию суммы N-1 для N=3 и N=4. Получилось что корреляция суммы N-1 СВ c СВ номер N составляют около 99% и 98%. В целом смысл улавливается, если есть три актива с отрицательной корреляцией, цены или дельта цена которых отрицательно коррелируют, то сумма изменений цен двух активов будет практически функциональной зависимостью от изменения цены третьего актива.
Инвестиционные платформы как инструмент привлечения внешнего капитала для бизнеса
Генеральный директор ПАО «МГКЛ» и глава подкомитета «Деловой России» по публичным рынкам капитала Алексей Лазутин в колонке для информационного агентства ПРАЙМ отметил, что главным вызовом...
Рейтинговое агентство «Эксперт РА» подтвердило кредитный рейтинг Займера на уровне ruBBB- со стабильным прогнозом. «Эксперт РА» отмечает: 🔸 Сильные конкурентные позиции Займера в сегменте,...
Делаем роботов для торговли фьючерсами на акции Мосбиржи
😎 Делаем роботов для торговли фьючерсами на акции Мосбиржи
Запускаем новый марафон: всю неделю будем учиться делать собственных роботов для торговли фьючерсами на акции. Вы научитесь:...
Интер РАО. Неужели дивиденды будут минимальными за 3 года? Обзор производственных результатов и отчета РСБУ за Q4 2025г.
Вышел отчет по РСБУ за Q4 2025г. от компании Интер РАО: 👉Выручка — 15,49 млрд руб.(-14,0% г/г)
👉Себестоимость — 12,79 млрд руб.(-10,8% г/г)
👉Валовая прибыль — 2,70 млрд руб.(-26,7% г/г)...
Яндекс ожидает рост выручка в 2026 году порядка 20% г/г и скорр EBITDA порядка 350 млрд руб Финансовый прогноз Яндекса на 2026 годКомпания прогнозирует рост выручки в 2026 году порядка 20% год к году ...
Вова Кожемяко, а нужно? ))) Добираю на проливах. Хороший краткосрочный депозит получается. На Авито реализуют сток, в канале и на сайте выкладывают переданную в лизинг технику/оборудование. Руковод...
Автоваз ожидает снижение продаж в феврале более, чем на 15% от плана, надеется реализовать чуть более 20 тыс авто — глава концерна Максим Соколов Автоваз ожидает снижение продаж в феврале более, чем н...
недавно думал о подобном, а Вы так четко сформулировали...
Это мне напоминает кажется формулы Эйнштейна и вероятности частиц… ;-))))
Хорошую генерацию последовательностей с наименьшей величиной взаимной корреляции (одной последовательности относительно другой последовательности) дают коды Голда.
О числе никто не говорит. Речь идет о наборе зависимых случайных величин.
Зависимость между СВ может быть выражена одним числом — корреляцией K.
Коды Голда дают очень низкую корреляцию, а нам нужна минимально возможная, т.е. как можно меньше нуля значение, а не как можно близкое к нулю.
Все же не понятно, что именно вам нужно. Значение автокорреляционной функции зависит от самих СВ и больше ни от чего, вы можете только сдвижку менять, при определенной сдвижке вы можете получить локальный минимум корреляции, который при получении следующего СВ может уже и не быть локальным минимумом.
Соответственно, вы хотите синтезировать некую функцию корреляция которой с исходными СВ будет минимальна или что?
2) Судя по всему, в условие надо дописать, что отдельные величины Xi имеют одинаковые математические ожидания EXi и дисперсии Var Xi.
3) Без ограничения общности считаем, что математическое ожидание каждой из величин равно 0 и дисперсия совпадает со вторым моментом E Xi^2 и равна 1, тогда корреляция равна математическому ожиданию произведения двух таких случайных величин r = E XiXj. Сумма S = X1+...+XN величин имеет неотрицательный второй момент E S^2 >= 0, который равен N*EX1^2 + N*(N-1)*EX1X2 = N*1 + N*(N-1)*r, откуда r >= -1/(N-1).
4) Наверное, надо ещё доказать, что существует многомерное нормальное распределение, для которого это равенство достигается. В этом случае K(N) = -1/(N-1) — график гиперболы.
5) Самое сложное — теперь придумать этому применение в трейдинге. :)
Упростим выражение:
1) E[(X1+..+Xn)*y] = Е(X1*Y)+E(X2*Y)+...+E(Xn*Y) = K+K+...+K=N*K
2) E(X1+...+Xn)*EY = 0, т.к. EY =0
3) D(X1+..+Xn)*D(Y) = D(X1+..+Xn)*1= D(X1)+...+D(Xn)+2*K*N!/(N-2)!/2! => D(Xn) =1 => N+K*(N-1)*N
Тогда получаем упрощенное выражение:
r=N*K/корень(N+K*(N-1)*N) = корень(N/(1+K(N-1)))*K
Известно что r>=-1 тогда:
корень(N/(1+K(N-1)))*K >=-1, возведем в квадрат обе части:
N/(1+K*(N-1))*K^2>=1
N*K^2-(N-1)*K-1>=0, решаем квадратное уравнение относительно К и получаем корни:
K=1, K=-1/N.
Таким образом r>=-1 при К>=-1/N для СВ Х1, Х2, ..., Хn и Y.
Если сделать замену Y=Xn+1 то K>=-1/(Nn+1 - 1)
откуда такая формула второго момента, у нас же N СВ.
Получается график гиперболы в IV четверти декартовой системы координат, где по х — число используемых случайных величин и у- корреляция между СВ.
«Каждая из них имеет отрицательную корреляцию K одновременно со всеми остальными»
а как такое возможно вообще? может имелось в виду «нулевую»?
SECRET походу решил в портфельное инвестирование удариться…