Вопрос по MLP -- обучению многослойного персептона
Пусть мы хотим научить MLP (Multilayered perceptron) отличать отрезки (например, длиной 255 значений) некоторого полезного сигнала (например, первых разностей ценового ряда) от отрезков «белого шума». То есть, банально, если на входе сети (255 входных нейронов) полезный сигнал, то на выходе мы хотим получать сигнал как можно ближе (в идеале равный) 1, а если на входе «шум», то 0.
Понятно, что мы можем сгенерировать столько образцов белого шума, сколько захотим, однако — вопрос! — можно ли в части шума обойтись без обучения сети «в лоб», а решить задачу аналитически, так чтобы — вместо обучения сети шуму — получить некоторые условия на веса сети?
Sergerk, никакие эмпирически данные данные не «бывают белым шумом», поскольку белый шум это математическая конструкция. То есть «отрезок белого шума» — это только то, что мы сами сгенерировали как отрезок белого шума. (Только давайте не обсуждать «квантовые генераторы белого шума», хорошо?)
То, что сеть наверняка не научится идеально дискриминировать (различать) отрезки первых разностей ценовых рядов и (отрезки) шум, — я понимаю.
Ivan FXS, Ну, почему математическая конструкция? Под белым шумом подразумевают только лишь наклон графика в двойных логарифмах мощности излучения от частоты… Близких к такому графику излучающих устройств или природных явлений, я думаю, достаточно... )))
Мм, движуха интересная, обучить модель отличать белый шум от не белого. Потому что не белый шум, он может разной степени зашумленности, если модель что-то определит как шум, скорее всего туда лучше не соваться сейчас.
Может лучше эту тему поразвивать?
Про вопрос «а решить задачу аналитически» — не понял зачем это нужно, если нагенерить шума вообще не проблема.
Replikant_mih, «модель» («его найдет») — какая модель, нейронная сеть? Взаимоотношения НС и аналитических решений известны независимо от этой конкретной моей задачки: НС устремляются к каким-то экстремумам, не менее того, но и не более.
Ну и поскольку задачка наполовину — в части одного из двух классов входных векторов — точно не аналитична, то о каком «найдет аналитическое решение» вообще можно тут говорить?
Replikant_mih, понятно, что НС как-то чему-то обучится. Всему ли, чему в принципе можно обучиться — известно не будет, и как это узнать — тоже не известно.
Актуальный состав портфеля и взгляд на рынок 2026: по-прежнему 0% позитива.
Добрый вечер! С момента предыдущего поста, касающегося моего портфеля, прошел квартал. Пришло время актуализировать его состав. Также поделюсь своим видением на ряд вещей, которые, на мой взгляд,...
«Цифровое золото» прорвало верхнюю границу восходящего треугольника на уровне 94 500 и сейчас тестирует пробитую горизонталь, формируя серию коротких свечей типа «доджи». Учитывая относительно...
Индикатор Fractal: торговые сигналы и робот для OsEngine. Видео
В этом видео разбираем индикатор Fractal Билла Вильямса — один из самых известных инструментов в трейдинге. Покажем, как формируются фракталы, какие торговые сигналы они дают, и продемонстрируем...
Стратегия 2026 по рынку акций от Mozgovik Research: трудный год, но, возможно, последний год низких цен
Сегодня у меня первый день официального отпуска. За окном темная звездная ночь, яркая белая луна, +24С и шум волн Андаманского моря. Неудачный перелет и джетлаг приводят к бессоннице, поэтому я...
Whisper, верно. Если после конвертации АП доля государства в АО станет 50% как сейчас то размытие текущих акционеров в 3 раза и потолок котировок тогда 60-71 рубль, а текущая оценка падает до 20-25...
🌾 Зерновой демпфер буксует: что меняется для инвестора на рынке РФ Зерновой демпфер — это плавающая экспортная пошлина на пшеницу. Когда мировые цены высокие, государство изымает часть экспортной марж...
Running68, спекулировать только на свои (в отсутствии маржинального лимита) неудобно. Сильно сковывает в объеме заявок (которые могут и не исполниться) и из доходных инструментов выходить надо.
...
Анна Политковская была убита 7 октября 2006 года в лифте своего дома в Москве. Следствие назвало мотивом убийства ее профессиональную деятельность.
В 2014 году за организацию и исполнение преступ...
Рынок акций отскочил! Перейдут ли бумаги снова к росту? На этой неделе рынок акций, в целом, продолжил торговаться в ритме прошлой недели, а именно в боковике. По сути, индекс ММВБ провел всю эту неде...
То, что сеть наверняка не научится идеально дискриминировать (различать) отрезки первых разностей ценовых рядов и (отрезки) шум, — я понимаю.
Мм, движуха интересная, обучить модель отличать белый шум от не белого. Потому что не белый шум, он может разной степени зашумленности, если модель что-то определит как шум, скорее всего туда лучше не соваться сейчас.
Может лучше эту тему поразвивать?
Про вопрос «а решить задачу аналитически» — не понял зачем это нужно, если нагенерить шума вообще не проблема.
Replikant_mih, «модель» («его найдет») — какая модель, нейронная сеть? Взаимоотношения НС и аналитических решений известны независимо от этой конкретной моей задачки: НС устремляются к каким-то экстремумам, не менее того, но и не более.
Ну и поскольку задачка наполовину — в части одного из двух классов входных векторов — точно не аналитична, то о каком «найдет аналитическое решение» вообще можно тут говорить?