оптимизация


Друзья, кто собаку съел на оптимизации и бэктестинге? Прошу вашего совета.

Есть те, кто автоматизировал, бэктестил и оптимизировал свою ручную систему? Пытаюсь найти способы прогнать свою ТС на истории, но нет опыта в этом. Может быть вы подскажете как лучше и проще это сделать?

Тестирование стратегий - Walk Forward Test vs CV Fold Test

В классических задачах прогнозирования используются в основном различные Fold  тесты. Их логика весьма понятна и прозрачна – защитить алгоритм от переобучения и получить лучшие стационарные параметры регуляризации. Например, такие, как лямбда Тихонова, или, если речь идёт о  бустинге на деревьях решений – минимальное количество листьев.  Однако сообщество Smart Lab настоятельно рекомендовало нам провести Walk Forward тесты, логика которых нам мало понятна.

А если логика не понятна, то можно детально рассмотреть какой-нибудь простой пример.

 

 Тестирование стратегий - Walk Forward Test  vs  CV Fold Test

Пусть в качестве объекта прогнозирования у нас будет выступать простая синусоида с частотой ω и амплитудой А. Без применения сложных математических методов эта задача решается следующим образом:

  1. Берутся исторические данные
  2. На основе данных  подбираются параметры амплитуды, частоты и фазы.
  3. Исходя из полученных «динамических» переменных модели строится прогноз на будущее.


( Читать дальше )

Портфельная оптимизация как бустинг на «слабых» моделях

Часть 2.

В прошлой части мы подбирали такую комбинацию статистических оценок динамики акций, которая давала нам возможность стабильно выбирать портфель акций лучше среднерыночного,  с показателем Шарпа на 26% выше индексного.

Мы также пробовали составлять портфель из портфелей и портфель на основе портфеля оценок, но в силу высокой линейной зависимости оценок и полученных на них портфелей друг от друга Bagging ожидаемо не дал никакого результата.

Тем не менее, этот важный этап подготовительных работ – построение портфеля (или композиции портфелей) на простых, статистических оценках дал нам некоторую отправную точку, относительно которой мы будем рассматривать эффективность всех наших последующих нововведений.

Портфельная оптимизация как бустинг на «слабых» моделях
Рис. 6. Иллюстрация динамики волатильности акций США, входящих в состав индекса S&P 500.

 

Основную проблему стандартных методов мы видим в том, что они разработаны для стационарных стохастических процессов, в то время как любые финансовые (а зачастую природные, биологические и др.), временные ряды имеют нестационарную природу. Так, например, широко известно, что логарифмическое изменение стоимости акций является нестационарным процессом со склонностью к консолидации (кластеризации) волатильности.



( Читать дальше )

Адаптивный параболик. Подскажете, в чем его суть?

Друзья! Слышал, что есть такой индикатор «Адаптивный параболик», учитывающий волатильность рынка. Буду очень признателен, если кто-нибудь поделится информацией о его сути, и есть-ли где-нибудь формула данного индикатора?

Портфельная оптимизация как бустинг на «слабых» моделях

Часть 1.

Традиционно считается, что задача портфельной оптимизации, или задача Марковица, представляет собой некоторую самостоятельную задачу выбора такого портфеля активов, который обладал бы максимальной доходностью при минимальных рисках.

Прим. В качестве актива могут выступать ценные бумаги (акции), их производные (опционы)  или торговые системы.

 

Решение задачи состоит из двух этапов:

  1. Прогноз доходности и ковариации активов в будущих периодах – то есть построение некоторого набора «слабых» прогностических моделей.
  2. Составление оптимального портфеля в соответствии с некоторой целевой функцией, и ранее полученными оценками. То есть построение такой композиции «слабых» моделей, которая обладала бы наибольшей прогностической силой.

 

Почему мы используем аналогию портфельной оптимизации с методами машинного обучения  — Bag, Boost?! Потому что в действительности (и мы это продемонстрируем) нам абсолютно не важно, насколько хорошо динамику наших временных рядов прогнозируют «слабые» модели – нам важно только то, чтобы ошибки прогнозов наших моделей взаимно компенсировали бы друг друга в некотором интегральном смысле. Иными словами – в случае бустинга – ошибка прогноза линейной композиции была бы минимальной, а в случае портфельной оптимизации –  была бы минимальной ошибка прогноза нелинейной композиции (то есть самого портфеля).



( Читать дальше )

Различия результатов тестирования на тиковых данных и OHLCM1, что ожидать в реальности?

Друзья! Тестирую пробойного робота.
Результаты тестирования на тиковых данных и OHLCM1 сильно различаются, причем визуально, если сравнивать входы и выходы, то робот примерно заходит одинаково.
Что ожидать в реальности, результаты более схожие с тиковыми или OHLCM1 данными, или нечто среднее между ними?

10 этапов разработки торгового робота под QUIK и TSLab от Robot Scalper

Торговый робот для QUIK на LUA

К нам поступил запрос на создание многопараметрического робота, с кучей условий торговой логики и в конце с припиской: «За работу я готов оплатить 800 рублей». Как у заказчика получилась такая сумма осталось не ясно. Возможно, всё тривиально, и это просто все его доступные средства, которые остались от торговли по интуиции. А возможно человек просто не понимает какую работу нужно проделать и из чего образуется цена на торговых роботов. Но это не страшно. Мы как раз сейчас и постараемся разобраться в этом.

Итак, чтобы разработать робота нужно выполнить определенные этапы. Рассмотрим их.
  1. Нужно определиться с торговой стратегией и формализовать её (точки входа, стоп-лоссы, тейк-профиты, фильтры и т.п.);
  2. Желательно создать прототип данного робота;
  3. Проверить работоспособность стратегии и прототипа на исторических данных;
  4. Желательно провести оптимизацию стратегии и найти оптимальные значения параметров;
  5. Нужно провести анализ сделок и добавить общие фильтры на ситуации в которых робот часто показывает убытки. Главное, нельзя примерять переоптимизацию! Иначе в реальной торговли результаты будут сильно отличаться! После этого возвращаемся к пункту 4. И работаем до тех пор пока стратегия не будет универсальной или пока мы её не забракуем как непригодную. Так тоже бывает, и не редко.


( Читать дальше )
  • обсудить на форуме:
  • TSLab

Как обойтись без склейки фьючей при тестировании и оптимизации торговой стратегии в ТСЛаб

Всю жизнь тестировал и оптимизировал торговые стратегии для фьючерсов используя так называемый «склеенный» фьючерс с сайта Финама. Я понимал и понимаю, что в момент «умирания» старого фьюча и соответственно перетекания ликвидности на новый фьючерс происходит ценовой ГЭП. Или контанго (когда цена нового фьюча больше чем цена уходящего в небытие) или бэквордация (обратная ситуация).

Как выяснилось, склейку фьючей Финам проводит по методу «Панама» (или проводил), а как будет проводить — кто его знает. Да и что за «Панама» — яндекс в помощью интересующимся. Смысл в том, что на стыке двух фьючей идут недостоверные котировки.

Из-за наличия такого ценового разрыва в склеенных фьючерсах результаты тестирования стратегии искажаются и как результат в процессе оптимизации находятся неоптимальные параметры.

Я считал, что это несущественные искажения, но если учесть, что оптимизацию иногда провожу на промежутке времени до 10 лет и каждый год происходит как минимум 4 склейки (поквартально) — получается около 40 сделок дают искаженный финансовый результат, которого можно не достичь в реальной торговле. Если же использовать фьючи на нефть — склейки могут доходить до 12 раз в году.

( Читать дальше )
  • обсудить на форуме:
  • TSLab

Оптимизация портфеля акций

Здравствуйте друзья. Изучая вопрос портфельного инвестирования для долгосрочной перспективы наткнулся на работы Гарри Марковица. Изложенные им труды показались достаточно логичными и легкореализуемыми в условиях сегодняшней компьютеризации. Основные идеи Г. Марковица, которые были использованы для составления портфельной модели:

  1. Величина риска – стандартное квадратическое отклонение доходности за расчетный период
  2. Уровень риска портфеля – умножение ковариационной матрицы на два вектора частей акций, входящих в портфель

Перед тем как начать, дам определение некоторым понятиям, использованным в статье:

  • Портфельная модель – ряд ограничений, накладываемых на параметры (доходность, риск и т.п.) акций перед добавлением их в портфель.

Целью данной работы являлось создание портфельной модели, критерием оценки которой является доходность.

Портфельная модель разрабатывается для отечественного фондового рынка. Торговые инструменты (акции) входящие в расчет взяты из индексов MICEX (Oil & Gas Indices; Consumer Goods & Retail Indices; Chemicals Indices; Metals & Mining Indices; Telecoms Indices; Electric Utilities Indices; Financials Index; Transport Index), в количестве 76 единиц. Расчетный период – один месяц.



( Читать дальше )

«ГрузовичкоФ» опубликовал решение о регистрации изменений в юридической структуре

«ГрузовичкоФ» — один из лидеров сегмента внутригородских перевозок в Москве и Санкт-Петербурге — проводит юридическую реорганизацию. Соответствующее решение опубликовано 11 декабря на странице компании на сайте Интерфакса.

Основная цель запланированных изменений — приведение юридической структуры в соответствие с высокими требованиями инвесторов. «ГрузовичкоФ» развивается как классический агрегатор, с представительствами в 19 городах России (помимо Москвы и Санкт-Петербурга, компания работает еще в 17 городах России по франшизе). В связи с такой спецификой бизнеса планируется создать юридическое лицо, которое станет центральным в структуре, будет управлять деятельностью всех остальных компаний, аккумулировать прибыль, распределять затраты.



( Читать дальше )

....все тэги
UPDONW